Spaces:
Running
Running
import gradio as gr | |
from gradio_imageslider import ImageSlider | |
from loadimg import load_img | |
from transformers import AutoModelForImageSegmentation | |
import torch | |
from torchvision import transforms | |
from io import BytesIO | |
# GPU ์ค์ ์ CPU๋ก ๋ณ๊ฒฝ | |
birefnet = AutoModelForImageSegmentation.from_pretrained( | |
"ZhengPeng7/BiRefNet", trust_remote_code=True | |
) | |
birefnet.to("cpu") # GPU -> CPU๋ก ๋ณ๊ฒฝ | |
transform_image = transforms.Compose( | |
[ | |
transforms.Resize((1024, 1024)), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
] | |
) | |
def fn(image): | |
im = load_img(image, output_type="pil") | |
im = im.convert("RGB") | |
origin = im.copy() | |
processed_image = process(im) | |
# Convert processed image to JPEG for download | |
buffered = BytesIO() | |
processed_image.convert("RGB").save(buffered, format="JPEG") | |
buffered.seek(0) | |
return processed_image, buffered | |
def process(image): | |
image_size = image.size | |
input_images = transform_image(image).unsqueeze(0).to("cpu") # GPU -> CPU๋ก ๋ณ๊ฒฝ | |
# Prediction | |
with torch.no_grad(): | |
preds = birefnet(input_images)[-1].sigmoid().cpu() | |
pred = preds[0].squeeze() | |
pred_pil = transforms.ToPILImage()(pred) | |
mask = pred_pil.resize(image_size) | |
image.putalpha(mask) | |
return image | |
slider = ImageSlider(label="Processed Image", type="pil") | |
download_output = gr.File(label="Download JPG File") | |
image_upload = gr.Image(label="Upload an image") | |
# ์๋ก์ด ์ํ ์ด๋ฏธ์ง (์: ๋์ผ ๋๋ ํ ๋ฆฌ์ ์์น) | |
sample_images = [ | |
["1.png"], | |
["2.jpg"], | |
["3.png"] | |
] | |
tab = gr.Interface( | |
fn=fn, | |
inputs=image_upload, | |
outputs=[slider, download_output], | |
examples=sample_images, | |
api_name="image" | |
) | |
demo = gr.TabbedInterface( | |
[tab], | |
["Image Upload"], | |
title="Background Removal Tool" | |
) | |
if __name__ == "__main__": | |
demo.launch(show_error=True) | |