import gradio as gr from gradio_imageslider import ImageSlider from loadimg import load_img from transformers import AutoModelForImageSegmentation import torch from torchvision import transforms from io import BytesIO # GPU 설정을 CPU로 변경 birefnet = AutoModelForImageSegmentation.from_pretrained( "ZhengPeng7/BiRefNet", trust_remote_code=True ) birefnet.to("cpu") # GPU -> CPU로 변경 transform_image = transforms.Compose( [ transforms.Resize((1024, 1024)), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ] ) def fn(image): im = load_img(image, output_type="pil") im = im.convert("RGB") origin = im.copy() processed_image = process(im) # Convert processed image to JPEG for download buffered = BytesIO() processed_image.convert("RGB").save(buffered, format="JPEG") buffered.seek(0) return processed_image, buffered def process(image): image_size = image.size input_images = transform_image(image).unsqueeze(0).to("cpu") # GPU -> CPU로 변경 # Prediction with torch.no_grad(): preds = birefnet(input_images)[-1].sigmoid().cpu() pred = preds[0].squeeze() pred_pil = transforms.ToPILImage()(pred) mask = pred_pil.resize(image_size) image.putalpha(mask) return image slider = ImageSlider(label="Processed Image", type="pil") download_output = gr.File(label="Download JPG File") image_upload = gr.Image(label="Upload an image") # 새로운 샘플 이미지 (예: 동일 디렉토리에 위치) sample_images = [ ["1.png"], ["2.jpg"], ["3.png"] ] tab = gr.Interface( fn=fn, inputs=image_upload, outputs=[slider, download_output], examples=sample_images, api_name="image" ) demo = gr.TabbedInterface( [tab], ["Image Upload"], title="Background Removal Tool" ) if __name__ == "__main__": demo.launch(show_error=True)