Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,2 +1,76 @@
|
|
| 1 |
-
import
|
| 2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from gradio_imageslider import ImageSlider
|
| 3 |
+
from loadimg import load_img
|
| 4 |
+
import spaces
|
| 5 |
+
from transformers import AutoModelForImageSegmentation
|
| 6 |
+
import torch
|
| 7 |
+
from torchvision import transforms
|
| 8 |
+
|
| 9 |
+
# GPU μ€μ μ CPUλ‘ λ³κ²½
|
| 10 |
+
# GPU μ€μ μ μμ νκ±°λ "cuda"λ₯Ό "cpu"λ‘ λ³κ²½
|
| 11 |
+
# torch.set_float32_matmul_precision("high")λ CPUμμ νμ μμ.
|
| 12 |
+
|
| 13 |
+
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
| 14 |
+
"ZhengPeng7/BiRefNet", trust_remote_code=True
|
| 15 |
+
)
|
| 16 |
+
birefnet.to("cpu") # GPU -> CPUλ‘ λ³κ²½
|
| 17 |
+
|
| 18 |
+
transform_image = transforms.Compose(
|
| 19 |
+
[
|
| 20 |
+
transforms.Resize((1024, 1024)),
|
| 21 |
+
transforms.ToTensor(),
|
| 22 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
| 23 |
+
]
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
def fn(image):
|
| 27 |
+
im = load_img(image, output_type="pil")
|
| 28 |
+
im = im.convert("RGB")
|
| 29 |
+
origin = im.copy()
|
| 30 |
+
processed_image = process(im)
|
| 31 |
+
return (processed_image, origin)
|
| 32 |
+
|
| 33 |
+
# @spaces.GPU λ°μ½λ μ΄ν° μ κ±°
|
| 34 |
+
# CPU νκ²½μμ λμνλλ‘ μ€μ
|
| 35 |
+
|
| 36 |
+
def process(image):
|
| 37 |
+
image_size = image.size
|
| 38 |
+
input_images = transform_image(image).unsqueeze(0).to("cpu") # GPU -> CPUλ‘ λ³κ²½
|
| 39 |
+
# Prediction
|
| 40 |
+
with torch.no_grad():
|
| 41 |
+
preds = birefnet(input_images)[-1].sigmoid().cpu()
|
| 42 |
+
pred = preds[0].squeeze()
|
| 43 |
+
pred_pil = transforms.ToPILImage()(pred)
|
| 44 |
+
mask = pred_pil.resize(image_size)
|
| 45 |
+
image.putalpha(mask)
|
| 46 |
+
return image
|
| 47 |
+
|
| 48 |
+
def process_file(f):
|
| 49 |
+
name_path = f.rsplit(".", 1)[0] + ".png"
|
| 50 |
+
im = load_img(f, output_type="pil")
|
| 51 |
+
im = im.convert("RGB")
|
| 52 |
+
transparent = process(im)
|
| 53 |
+
transparent.save(name_path)
|
| 54 |
+
return name_path
|
| 55 |
+
|
| 56 |
+
slider1 = ImageSlider(label="Processed Image", type="pil")
|
| 57 |
+
slider2 = ImageSlider(label="Processed Image from URL", type="pil")
|
| 58 |
+
image_upload = gr.Image(label="Upload an image")
|
| 59 |
+
image_file_upload = gr.Image(label="Upload an image", type="filepath")
|
| 60 |
+
url_input = gr.Textbox(label="Paste an image URL")
|
| 61 |
+
output_file = gr.File(label="Output PNG File")
|
| 62 |
+
|
| 63 |
+
# Example images
|
| 64 |
+
chameleon = load_img("butterfly.jpg", output_type="pil")
|
| 65 |
+
url_example = "https://hips.hearstapps.com/hmg-prod/images/gettyimages-1229892983-square.jpg"
|
| 66 |
+
|
| 67 |
+
tab1 = gr.Interface(fn, inputs=image_upload, outputs=slider1, examples=[chameleon], api_name="image")
|
| 68 |
+
tab2 = gr.Interface(fn, inputs=url_input, outputs=slider2, examples=[url_example], api_name="text")
|
| 69 |
+
tab3 = gr.Interface(process_file, inputs=image_file_upload, outputs=output_file, examples=["butterfly.jpg"], api_name="png")
|
| 70 |
+
|
| 71 |
+
demo = gr.TabbedInterface(
|
| 72 |
+
[tab1, tab2, tab3], ["Image Upload", "URL Input", "File Output"], title="Background Removal Tool"
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
if __name__ == "__main__":
|
| 76 |
+
demo.launch(show_error=True)
|