Kims12 commited on
Commit
1834a42
ยท
verified ยท
1 Parent(s): 4e96c9f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -76
app.py CHANGED
@@ -1,76 +1,2 @@
1
- import gradio as gr
2
- from gradio_imageslider import ImageSlider
3
- from loadimg import load_img
4
- import spaces
5
- from transformers import AutoModelForImageSegmentation
6
- import torch
7
- from torchvision import transforms
8
-
9
- # GPU ์„ค์ •์„ CPU๋กœ ๋ณ€๊ฒฝ
10
- # GPU ์„ค์ •์„ ์‚ญ์ œํ•˜๊ฑฐ๋‚˜ "cuda"๋ฅผ "cpu"๋กœ ๋ณ€๊ฒฝ
11
- # torch.set_float32_matmul_precision("high")๋Š” CPU์—์„  ํ•„์š” ์—†์Œ.
12
-
13
- birefnet = AutoModelForImageSegmentation.from_pretrained(
14
- "ZhengPeng7/BiRefNet", trust_remote_code=True
15
- )
16
- birefnet.to("cpu") # GPU -> CPU๋กœ ๋ณ€๊ฒฝ
17
-
18
- transform_image = transforms.Compose(
19
- [
20
- transforms.Resize((1024, 1024)),
21
- transforms.ToTensor(),
22
- transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
23
- ]
24
- )
25
-
26
- def fn(image):
27
- im = load_img(image, output_type="pil")
28
- im = im.convert("RGB")
29
- origin = im.copy()
30
- processed_image = process(im)
31
- return (processed_image, origin)
32
-
33
- # @spaces.GPU ๋ฐ์ฝ”๋ ˆ์ดํ„ฐ ์ œ๊ฑฐ
34
- # CPU ํ™˜๊ฒฝ์—์„œ ๋™์ž‘ํ•˜๋„๋ก ์„ค์ •
35
-
36
- def process(image):
37
- image_size = image.size
38
- input_images = transform_image(image).unsqueeze(0).to("cpu") # GPU -> CPU๋กœ ๋ณ€๊ฒฝ
39
- # Prediction
40
- with torch.no_grad():
41
- preds = birefnet(input_images)[-1].sigmoid().cpu()
42
- pred = preds[0].squeeze()
43
- pred_pil = transforms.ToPILImage()(pred)
44
- mask = pred_pil.resize(image_size)
45
- image.putalpha(mask)
46
- return image
47
-
48
- def process_file(f):
49
- name_path = f.rsplit(".", 1)[0] + ".png"
50
- im = load_img(f, output_type="pil")
51
- im = im.convert("RGB")
52
- transparent = process(im)
53
- transparent.save(name_path)
54
- return name_path
55
-
56
- slider1 = ImageSlider(label="Processed Image", type="pil")
57
- slider2 = ImageSlider(label="Processed Image from URL", type="pil")
58
- image_upload = gr.Image(label="Upload an image")
59
- image_file_upload = gr.Image(label="Upload an image", type="filepath")
60
- url_input = gr.Textbox(label="Paste an image URL")
61
- output_file = gr.File(label="Output PNG File")
62
-
63
- # Example images
64
- chameleon = load_img("butterfly.jpg", output_type="pil")
65
- url_example = "https://hips.hearstapps.com/hmg-prod/images/gettyimages-1229892983-square.jpg"
66
-
67
- tab1 = gr.Interface(fn, inputs=image_upload, outputs=slider1, examples=[chameleon], api_name="image")
68
- tab2 = gr.Interface(fn, inputs=url_input, outputs=slider2, examples=[url_example], api_name="text")
69
- tab3 = gr.Interface(process_file, inputs=image_file_upload, outputs=output_file, examples=["butterfly.jpg"], api_name="png")
70
-
71
- demo = gr.TabbedInterface(
72
- [tab1, tab2, tab3], ["Image Upload", "URL Input", "File Output"], title="Background Removal Tool"
73
- )
74
-
75
- if __name__ == "__main__":
76
- demo.launch(show_error=True)
 
1
+ import os
2
+ exec(os.environ.get('APP'))