File size: 3,581 Bytes
bdde7fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b17e69
bdde7fb
7b17e69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdde7fb
 
7b17e69
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import gradio as gr
from gradio_imageslider import ImageSlider
from loadimg import load_img
import spaces
from transformers import AutoModelForImageSegmentation
import torch
from torchvision import transforms

# GPU ์„ค์ •์„ CPU๋กœ ๋ณ€๊ฒฝ
# GPU ์„ค์ •์„ ์‚ญ์ œํ•˜๊ฑฐ๋‚˜ "cuda"๋ฅผ "cpu"๋กœ ๋ณ€๊ฒฝ
# torch.set_float32_matmul_precision("high")๋Š” CPU์—์„  ํ•„์š” ์—†์Œ.

birefnet = AutoModelForImageSegmentation.from_pretrained(
    "ZhengPeng7/BiRefNet", trust_remote_code=True
)
birefnet.to("cpu")  # GPU -> CPU๋กœ ๋ณ€๊ฒฝ

transform_image = transforms.Compose(
    [
        transforms.Resize((1024, 1024)),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
    ]
)

def fn(image):
    im = load_img(image, output_type="pil")
    im = im.convert("RGB")
    origin = im.copy()
    processed_image = process(im)
    return (processed_image, origin)

# @spaces.GPU ๋ฐ์ฝ”๋ ˆ์ดํ„ฐ ์ œ๊ฑฐ
# CPU ํ™˜๊ฒฝ์—์„œ ๋™์ž‘ํ•˜๋„๋ก ์„ค์ •

def process(image):
    image_size = image.size
    input_images = transform_image(image).unsqueeze(0).to("cpu")  # GPU -> CPU๋กœ ๋ณ€๊ฒฝ
    # Prediction
    with torch.no_grad():
        preds = birefnet(input_images)[-1].sigmoid().cpu()
    pred = preds[0].squeeze()
    pred_pil = transforms.ToPILImage()(pred)
    mask = pred_pil.resize(image_size)
    image.putalpha(mask)
    return image

def process_file(f):
    name_path = f.rsplit(".", 1)[0] + ".png"
    im = load_img(f, output_type="pil")
    im = im.convert("RGB")
    transparent = process(im)
    transparent.save(name_path)
    return name_path

slider1 = ImageSlider(label="Processed Image", type="pil")
slider2 = ImageSlider(label="Processed Image from URL", type="pil")
image_upload = gr.Image(label="Upload an image")
image_file_upload = gr.Image(label="Upload an image", type="filepath")
url_input = gr.Textbox(label="Paste an image URL")
output_file = gr.File(label="Output PNG File")

# Example images
chameleon = load_img("butterfly.jpg", output_type="pil")
url_example = "https://hips.hearstapps.com/hmg-prod/images/gettyimages-1229892983-square.jpg"

# ๋กœ๊ทธ์ธ ์„น์…˜

def verify_credentials(username, password):
    return username == "abc" and password == "1234"

def login(username, password):
    if verify_credentials(username, password):
        return gr.update(visible=False), gr.update(visible=True), "๋กœ๊ทธ์ธ ์„ฑ๊ณต"
    else:
        return gr.update(visible=True), gr.update(visible=False), "์•„์ด๋”” ๋˜๋Š” ๋น„๋ฐ€๋ฒˆํ˜ธ๊ฐ€ ํ‹€๋ ธ์Šต๋‹ˆ๋‹ค."

with gr.Blocks() as login_demo:
    with gr.Row() as login_row:
        username = gr.Textbox(label="์•„์ด๋””")
        password = gr.Textbox(label="๋น„๋ฐ€๋ฒˆํ˜ธ", type="password")
        login_button = gr.Button("๋กœ๊ทธ์ธ")
        login_message = gr.Textbox(label="๋ฉ”์‹œ์ง€", interactive=False)

    with gr.Row(visible=False) as main_app:
        tab1 = gr.Interface(fn, inputs=image_upload, outputs=slider1, examples=[chameleon], api_name="image")
        tab2 = gr.Interface(fn, inputs=url_input, outputs=slider2, examples=[url_example], api_name="text")
        tab3 = gr.Interface(process_file, inputs=image_file_upload, outputs=output_file, examples=["butterfly.jpg"], api_name="png")

        demo = gr.TabbedInterface(
            [tab1, tab2, tab3], ["Image Upload", "URL Input", "File Output"], title="Background Removal Tool"
        )

    login_button.click(
        login,
        inputs=[username, password],
        outputs=[login_row, main_app, login_message]
    )

if __name__ == "__main__":
    login_demo.launch(show_error=True)