Spaces:
Running
on
Zero
Running
on
Zero
Anurag Bhardwaj
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -5,23 +5,19 @@ from diffusers import DiffusionPipeline
|
|
5 |
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
|
6 |
from functools import lru_cache
|
7 |
from PIL import Image
|
8 |
-
from huggingface_hub import login
|
9 |
-
from transformers import CLIPImageProcessor # Updated per deprecation warning
|
10 |
|
11 |
-
|
12 |
-
|
|
|
|
|
13 |
|
14 |
@lru_cache(maxsize=1)
|
15 |
def load_pipeline():
|
16 |
-
#
|
17 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
18 |
-
torch_dtype = torch.bfloat16 if device.type == "cuda" else torch.float32
|
19 |
-
|
20 |
base_model = "black-forest-labs/FLUX.1-dev"
|
21 |
pipe = DiffusionPipeline.from_pretrained(
|
22 |
base_model,
|
23 |
-
torch_dtype=
|
24 |
-
low_cpu_mem_usage=True # Reduce memory usage during load
|
25 |
)
|
26 |
|
27 |
# Load LoRA weights
|
@@ -34,19 +30,12 @@ def load_pipeline():
|
|
34 |
)
|
35 |
image_processor = CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
36 |
|
37 |
-
#
|
|
|
38 |
if device.type == "cuda":
|
39 |
-
|
40 |
-
pipe.enable_xformers_memory_efficient_attention()
|
41 |
-
except Exception as e:
|
42 |
-
print("Warning: Could not enable xformers memory efficient attention:", e)
|
43 |
-
else:
|
44 |
-
try:
|
45 |
-
pipe.enable_sequential_cpu_offload()
|
46 |
-
except Exception as e:
|
47 |
-
print("Warning: Could not enable sequential CPU offload:", e)
|
48 |
-
|
49 |
pipe = pipe.to(device)
|
|
|
50 |
return pipe, safety_checker, image_processor
|
51 |
|
52 |
pipe, safety_checker, image_processor = load_pipeline()
|
@@ -54,8 +43,8 @@ pipe, safety_checker, image_processor = load_pipeline()
|
|
54 |
def generate_image(
|
55 |
prompt,
|
56 |
seed=42,
|
57 |
-
width=
|
58 |
-
height=
|
59 |
guidance_scale=6,
|
60 |
steps=28,
|
61 |
progress=gr.Progress()
|
@@ -65,11 +54,14 @@ def generate_image(
|
|
65 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
66 |
generator = torch.Generator(device=device).manual_seed(seed)
|
67 |
|
68 |
-
# Auto-add
|
69 |
if "super realism" not in prompt.lower():
|
70 |
prompt = f"Super Realism, {prompt}"
|
71 |
|
72 |
-
#
|
|
|
|
|
|
|
73 |
with torch.inference_mode():
|
74 |
result = pipe(
|
75 |
prompt=prompt,
|
@@ -77,25 +69,25 @@ def generate_image(
|
|
77 |
height=height,
|
78 |
guidance_scale=guidance_scale,
|
79 |
num_inference_steps=steps,
|
80 |
-
generator=generator
|
|
|
81 |
)
|
82 |
image = result.images[0]
|
83 |
|
84 |
-
progress(
|
85 |
-
# Preprocess
|
86 |
safety_input = image_processor(image, return_tensors="pt")
|
87 |
np_image = np.array(image)
|
88 |
|
89 |
-
#
|
90 |
_, nsfw_detected = safety_checker(
|
91 |
-
images=[np_image],
|
92 |
clip_input=safety_input.pixel_values
|
93 |
)
|
94 |
|
95 |
if nsfw_detected[0]:
|
96 |
return Image.new("RGB", (512, 512)), "NSFW content detected"
|
97 |
|
98 |
-
progress(1, desc="Generation successful")
|
99 |
return image, "Generation successful"
|
100 |
|
101 |
except Exception as e:
|
@@ -108,9 +100,8 @@ with gr.Blocks() as app:
|
|
108 |
with gr.Column():
|
109 |
prompt_input = gr.Textbox(label="Prompt", value="A portrait of a person")
|
110 |
seed_input = gr.Slider(0, 1000, value=42, label="Seed")
|
111 |
-
|
112 |
-
|
113 |
-
height_input = gr.Slider(256, 1024, value=512, label="Height")
|
114 |
guidance_input = gr.Slider(1, 20, value=6, label="Guidance Scale")
|
115 |
steps_input = gr.Slider(10, 100, value=28, label="Steps")
|
116 |
submit = gr.Button("Generate")
|
@@ -125,5 +116,9 @@ with gr.Blocks() as app:
|
|
125 |
outputs=[output_image, status]
|
126 |
)
|
127 |
|
128 |
-
#
|
129 |
app.queue(max_size=3).launch()
|
|
|
|
|
|
|
|
|
|
5 |
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
|
6 |
from functools import lru_cache
|
7 |
from PIL import Image
|
|
|
|
|
8 |
|
9 |
+
from torchvision import transforms
|
10 |
+
from transformers import CLIPImageProcessor # Updated import
|
11 |
+
|
12 |
+
|
13 |
|
14 |
@lru_cache(maxsize=1)
|
15 |
def load_pipeline():
|
16 |
+
# Load base model
|
|
|
|
|
|
|
17 |
base_model = "black-forest-labs/FLUX.1-dev"
|
18 |
pipe = DiffusionPipeline.from_pretrained(
|
19 |
base_model,
|
20 |
+
torch_dtype=torch.bfloat16
|
|
|
21 |
)
|
22 |
|
23 |
# Load LoRA weights
|
|
|
30 |
)
|
31 |
image_processor = CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
32 |
|
33 |
+
# Optimizations: enable memory efficient attention if using GPU
|
34 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
35 |
if device.type == "cuda":
|
36 |
+
pipe.enable_xformers_memory_efficient_attention()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
pipe = pipe.to(device)
|
38 |
+
|
39 |
return pipe, safety_checker, image_processor
|
40 |
|
41 |
pipe, safety_checker, image_processor = load_pipeline()
|
|
|
43 |
def generate_image(
|
44 |
prompt,
|
45 |
seed=42,
|
46 |
+
width=1024,
|
47 |
+
height=1024,
|
48 |
guidance_scale=6,
|
49 |
steps=28,
|
50 |
progress=gr.Progress()
|
|
|
54 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
55 |
generator = torch.Generator(device=device).manual_seed(seed)
|
56 |
|
57 |
+
# Auto-add trigger words if not present
|
58 |
if "super realism" not in prompt.lower():
|
59 |
prompt = f"Super Realism, {prompt}"
|
60 |
|
61 |
+
# Define the callback function with the proper signature
|
62 |
+
def update_progress(step, timestep, latents):
|
63 |
+
progress((step + 1) / steps, desc="Generating image...")
|
64 |
+
|
65 |
with torch.inference_mode():
|
66 |
result = pipe(
|
67 |
prompt=prompt,
|
|
|
69 |
height=height,
|
70 |
guidance_scale=guidance_scale,
|
71 |
num_inference_steps=steps,
|
72 |
+
generator=generator,
|
73 |
+
|
74 |
)
|
75 |
image = result.images[0]
|
76 |
|
77 |
+
progress(1, desc="Safety checking...")
|
78 |
+
# Preprocess image for safety checking using the updated image processor
|
79 |
safety_input = image_processor(image, return_tensors="pt")
|
80 |
np_image = np.array(image)
|
81 |
|
82 |
+
# Unpack safety checker results
|
83 |
_, nsfw_detected = safety_checker(
|
84 |
+
images=[np_image],
|
85 |
clip_input=safety_input.pixel_values
|
86 |
)
|
87 |
|
88 |
if nsfw_detected[0]:
|
89 |
return Image.new("RGB", (512, 512)), "NSFW content detected"
|
90 |
|
|
|
91 |
return image, "Generation successful"
|
92 |
|
93 |
except Exception as e:
|
|
|
100 |
with gr.Column():
|
101 |
prompt_input = gr.Textbox(label="Prompt", value="A portrait of a person")
|
102 |
seed_input = gr.Slider(0, 1000, value=42, label="Seed")
|
103 |
+
width_input = gr.Slider(512, 2048, value=1024, label="Width")
|
104 |
+
height_input = gr.Slider(512, 2048, value=1024, label="Height")
|
|
|
105 |
guidance_input = gr.Slider(1, 20, value=6, label="Guidance Scale")
|
106 |
steps_input = gr.Slider(10, 100, value=28, label="Steps")
|
107 |
submit = gr.Button("Generate")
|
|
|
116 |
outputs=[output_image, status]
|
117 |
)
|
118 |
|
119 |
+
# Rate limiting: 1 request at a time, with a max queue size of 3
|
120 |
app.queue(max_size=3).launch()
|
121 |
+
|
122 |
+
# Uncomment for advanced multiple GPU support:
|
123 |
+
# pipe.enable_model_cpu_offload()
|
124 |
+
# pipe.enable_sequential_cpu_offload()
|