Spaces:
Running
on
Zero
Running
on
Zero
Anurag Bhardwaj
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -5,17 +5,23 @@ from diffusers import DiffusionPipeline
|
|
5 |
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
|
6 |
from functools import lru_cache
|
7 |
from PIL import Image
|
|
|
|
|
8 |
|
9 |
-
|
10 |
-
|
11 |
|
12 |
@lru_cache(maxsize=1)
|
13 |
def load_pipeline():
|
14 |
-
#
|
|
|
|
|
|
|
15 |
base_model = "black-forest-labs/FLUX.1-dev"
|
16 |
pipe = DiffusionPipeline.from_pretrained(
|
17 |
base_model,
|
18 |
-
torch_dtype=
|
|
|
19 |
)
|
20 |
|
21 |
# Load LoRA weights
|
@@ -28,12 +34,19 @@ def load_pipeline():
|
|
28 |
)
|
29 |
image_processor = CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
30 |
|
31 |
-
#
|
32 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
33 |
if device.type == "cuda":
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
|
|
37 |
return pipe, safety_checker, image_processor
|
38 |
|
39 |
pipe, safety_checker, image_processor = load_pipeline()
|
@@ -41,8 +54,8 @@ pipe, safety_checker, image_processor = load_pipeline()
|
|
41 |
def generate_image(
|
42 |
prompt,
|
43 |
seed=42,
|
44 |
-
width=
|
45 |
-
height=
|
46 |
guidance_scale=6,
|
47 |
steps=28,
|
48 |
progress=gr.Progress()
|
@@ -52,14 +65,11 @@ def generate_image(
|
|
52 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
53 |
generator = torch.Generator(device=device).manual_seed(seed)
|
54 |
|
55 |
-
# Auto-add trigger
|
56 |
if "super realism" not in prompt.lower():
|
57 |
prompt = f"Super Realism, {prompt}"
|
58 |
|
59 |
-
#
|
60 |
-
def update_progress(step, timestep, latents):
|
61 |
-
progress((step + 1) / steps, desc="Generating image...")
|
62 |
-
|
63 |
with torch.inference_mode():
|
64 |
result = pipe(
|
65 |
prompt=prompt,
|
@@ -67,25 +77,25 @@ def generate_image(
|
|
67 |
height=height,
|
68 |
guidance_scale=guidance_scale,
|
69 |
num_inference_steps=steps,
|
70 |
-
generator=generator
|
71 |
-
callback=update_progress
|
72 |
)
|
73 |
image = result.images[0]
|
74 |
|
75 |
-
progress(
|
76 |
-
# Preprocess image for safety checking
|
77 |
safety_input = image_processor(image, return_tensors="pt")
|
78 |
np_image = np.array(image)
|
79 |
|
80 |
-
#
|
81 |
_, nsfw_detected = safety_checker(
|
82 |
-
images=[np_image],
|
83 |
clip_input=safety_input.pixel_values
|
84 |
)
|
85 |
|
86 |
if nsfw_detected[0]:
|
87 |
return Image.new("RGB", (512, 512)), "NSFW content detected"
|
88 |
|
|
|
89 |
return image, "Generation successful"
|
90 |
|
91 |
except Exception as e:
|
@@ -98,8 +108,9 @@ with gr.Blocks() as app:
|
|
98 |
with gr.Column():
|
99 |
prompt_input = gr.Textbox(label="Prompt", value="A portrait of a person")
|
100 |
seed_input = gr.Slider(0, 1000, value=42, label="Seed")
|
101 |
-
|
102 |
-
|
|
|
103 |
guidance_input = gr.Slider(1, 20, value=6, label="Guidance Scale")
|
104 |
steps_input = gr.Slider(10, 100, value=28, label="Steps")
|
105 |
submit = gr.Button("Generate")
|
@@ -114,9 +125,5 @@ with gr.Blocks() as app:
|
|
114 |
outputs=[output_image, status]
|
115 |
)
|
116 |
|
117 |
-
#
|
118 |
app.queue(max_size=3).launch()
|
119 |
-
|
120 |
-
# Uncomment for advanced multiple GPU support:
|
121 |
-
# pipe.enable_model_cpu_offload()
|
122 |
-
# pipe.enable_sequential_cpu_offload()
|
|
|
5 |
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
|
6 |
from functools import lru_cache
|
7 |
from PIL import Image
|
8 |
+
from huggingface_hub import login
|
9 |
+
from transformers import CLIPImageProcessor # Updated per deprecation warning
|
10 |
|
11 |
+
# Initialize with your Hugging Face token
|
12 |
+
login(token="YOUR_HF_TOKEN")
|
13 |
|
14 |
@lru_cache(maxsize=1)
|
15 |
def load_pipeline():
|
16 |
+
# Determine device and appropriate torch_dtype
|
17 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
18 |
+
torch_dtype = torch.bfloat16 if device.type == "cuda" else torch.float32
|
19 |
+
|
20 |
base_model = "black-forest-labs/FLUX.1-dev"
|
21 |
pipe = DiffusionPipeline.from_pretrained(
|
22 |
base_model,
|
23 |
+
torch_dtype=torch_dtype,
|
24 |
+
low_cpu_mem_usage=True # Reduce memory usage during load
|
25 |
)
|
26 |
|
27 |
# Load LoRA weights
|
|
|
34 |
)
|
35 |
image_processor = CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
36 |
|
37 |
+
# Enable GPU optimizations if on GPU; else, try sequential offloading on CPU
|
|
|
38 |
if device.type == "cuda":
|
39 |
+
try:
|
40 |
+
pipe.enable_xformers_memory_efficient_attention()
|
41 |
+
except Exception as e:
|
42 |
+
print("Warning: Could not enable xformers memory efficient attention:", e)
|
43 |
+
else:
|
44 |
+
try:
|
45 |
+
pipe.enable_sequential_cpu_offload()
|
46 |
+
except Exception as e:
|
47 |
+
print("Warning: Could not enable sequential CPU offload:", e)
|
48 |
|
49 |
+
pipe = pipe.to(device)
|
50 |
return pipe, safety_checker, image_processor
|
51 |
|
52 |
pipe, safety_checker, image_processor = load_pipeline()
|
|
|
54 |
def generate_image(
|
55 |
prompt,
|
56 |
seed=42,
|
57 |
+
width=512, # Lowered default resolution for reduced memory usage
|
58 |
+
height=512, # Lowered default resolution for reduced memory usage
|
59 |
guidance_scale=6,
|
60 |
steps=28,
|
61 |
progress=gr.Progress()
|
|
|
65 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
66 |
generator = torch.Generator(device=device).manual_seed(seed)
|
67 |
|
68 |
+
# Auto-add the trigger word if not already present
|
69 |
if "super realism" not in prompt.lower():
|
70 |
prompt = f"Super Realism, {prompt}"
|
71 |
|
72 |
+
# Generation without a callback since it's not supported
|
|
|
|
|
|
|
73 |
with torch.inference_mode():
|
74 |
result = pipe(
|
75 |
prompt=prompt,
|
|
|
77 |
height=height,
|
78 |
guidance_scale=guidance_scale,
|
79 |
num_inference_steps=steps,
|
80 |
+
generator=generator
|
|
|
81 |
)
|
82 |
image = result.images[0]
|
83 |
|
84 |
+
progress(0.8, desc="Generation complete. Running safety check...")
|
85 |
+
# Preprocess the image for safety checking
|
86 |
safety_input = image_processor(image, return_tensors="pt")
|
87 |
np_image = np.array(image)
|
88 |
|
89 |
+
# Run the safety checker; it returns a tuple where the second element is nsfw flags
|
90 |
_, nsfw_detected = safety_checker(
|
91 |
+
images=[np_image],
|
92 |
clip_input=safety_input.pixel_values
|
93 |
)
|
94 |
|
95 |
if nsfw_detected[0]:
|
96 |
return Image.new("RGB", (512, 512)), "NSFW content detected"
|
97 |
|
98 |
+
progress(1, desc="Generation successful")
|
99 |
return image, "Generation successful"
|
100 |
|
101 |
except Exception as e:
|
|
|
108 |
with gr.Column():
|
109 |
prompt_input = gr.Textbox(label="Prompt", value="A portrait of a person")
|
110 |
seed_input = gr.Slider(0, 1000, value=42, label="Seed")
|
111 |
+
# Lower the resolution slider range for less memory-intensive generation
|
112 |
+
width_input = gr.Slider(256, 1024, value=512, label="Width")
|
113 |
+
height_input = gr.Slider(256, 1024, value=512, label="Height")
|
114 |
guidance_input = gr.Slider(1, 20, value=6, label="Guidance Scale")
|
115 |
steps_input = gr.Slider(10, 100, value=28, label="Steps")
|
116 |
submit = gr.Button("Generate")
|
|
|
125 |
outputs=[output_image, status]
|
126 |
)
|
127 |
|
128 |
+
# Use queue without GPU-specific parameters
|
129 |
app.queue(max_size=3).launch()
|
|
|
|
|
|
|
|