Spaces:
Running
on
Zero
Running
on
Zero
Anurag Bhardwaj
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -6,22 +6,21 @@ from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
|
|
6 |
from functools import lru_cache
|
7 |
from PIL import Image
|
8 |
|
9 |
-
from torchvision import transforms
|
10 |
from transformers import CLIPImageProcessor # Updated per deprecation warning
|
11 |
-
|
12 |
|
13 |
|
14 |
@lru_cache(maxsize=1)
|
15 |
def load_pipeline():
|
16 |
-
# Determine device and
|
17 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
18 |
torch_dtype = torch.bfloat16 if device.type == "cuda" else torch.float32
|
19 |
|
20 |
-
# Load base model with the appropriate dtype
|
21 |
base_model = "black-forest-labs/FLUX.1-dev"
|
22 |
pipe = DiffusionPipeline.from_pretrained(
|
23 |
base_model,
|
24 |
-
torch_dtype=torch_dtype
|
|
|
25 |
)
|
26 |
|
27 |
# Load LoRA weights
|
@@ -34,12 +33,17 @@ def load_pipeline():
|
|
34 |
)
|
35 |
image_processor = CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
36 |
|
37 |
-
# Enable GPU
|
38 |
if device.type == "cuda":
|
39 |
try:
|
40 |
pipe.enable_xformers_memory_efficient_attention()
|
41 |
except Exception as e:
|
42 |
print("Warning: Could not enable xformers memory efficient attention:", e)
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
pipe = pipe.to(device)
|
45 |
return pipe, safety_checker, image_processor
|
@@ -49,8 +53,8 @@ pipe, safety_checker, image_processor = load_pipeline()
|
|
49 |
def generate_image(
|
50 |
prompt,
|
51 |
seed=42,
|
52 |
-
width=
|
53 |
-
height=
|
54 |
guidance_scale=6,
|
55 |
steps=28,
|
56 |
progress=gr.Progress()
|
@@ -60,11 +64,10 @@ def generate_image(
|
|
60 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
61 |
generator = torch.Generator(device=device).manual_seed(seed)
|
62 |
|
63 |
-
#
|
64 |
if "super realism" not in prompt.lower():
|
65 |
prompt = f"Super Realism, {prompt}"
|
66 |
|
67 |
-
# Define a callback to update progress
|
68 |
def update_progress(step, timestep, latents):
|
69 |
progress((step + 1) / steps, desc="Generating image...")
|
70 |
|
@@ -81,13 +84,12 @@ def generate_image(
|
|
81 |
image = result.images[0]
|
82 |
|
83 |
progress(1, desc="Safety checking...")
|
84 |
-
# Preprocess the image for safety checking
|
85 |
safety_input = image_processor(image, return_tensors="pt")
|
86 |
np_image = np.array(image)
|
87 |
|
88 |
-
# Run the
|
89 |
_, nsfw_detected = safety_checker(
|
90 |
-
images=[np_image],
|
91 |
clip_input=safety_input.pixel_values
|
92 |
)
|
93 |
|
@@ -106,8 +108,9 @@ with gr.Blocks() as app:
|
|
106 |
with gr.Column():
|
107 |
prompt_input = gr.Textbox(label="Prompt", value="A portrait of a person")
|
108 |
seed_input = gr.Slider(0, 1000, value=42, label="Seed")
|
109 |
-
|
110 |
-
|
|
|
111 |
guidance_input = gr.Slider(1, 20, value=6, label="Guidance Scale")
|
112 |
steps_input = gr.Slider(10, 100, value=28, label="Steps")
|
113 |
submit = gr.Button("Generate")
|
@@ -122,5 +125,5 @@ with gr.Blocks() as app:
|
|
122 |
outputs=[output_image, status]
|
123 |
)
|
124 |
|
125 |
-
#
|
126 |
app.queue(max_size=3).launch()
|
|
|
6 |
from functools import lru_cache
|
7 |
from PIL import Image
|
8 |
|
|
|
9 |
from transformers import CLIPImageProcessor # Updated per deprecation warning
|
10 |
+
|
11 |
|
12 |
|
13 |
@lru_cache(maxsize=1)
|
14 |
def load_pipeline():
|
15 |
+
# Determine device and appropriate torch_dtype
|
16 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
17 |
torch_dtype = torch.bfloat16 if device.type == "cuda" else torch.float32
|
18 |
|
|
|
19 |
base_model = "black-forest-labs/FLUX.1-dev"
|
20 |
pipe = DiffusionPipeline.from_pretrained(
|
21 |
base_model,
|
22 |
+
torch_dtype=torch_dtype,
|
23 |
+
low_cpu_mem_usage=True # Reduce memory usage during load
|
24 |
)
|
25 |
|
26 |
# Load LoRA weights
|
|
|
33 |
)
|
34 |
image_processor = CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
35 |
|
36 |
+
# Enable GPU optimizations if on GPU; else, try sequential offloading on CPU
|
37 |
if device.type == "cuda":
|
38 |
try:
|
39 |
pipe.enable_xformers_memory_efficient_attention()
|
40 |
except Exception as e:
|
41 |
print("Warning: Could not enable xformers memory efficient attention:", e)
|
42 |
+
else:
|
43 |
+
try:
|
44 |
+
pipe.enable_sequential_cpu_offload()
|
45 |
+
except Exception as e:
|
46 |
+
print("Warning: Could not enable sequential CPU offload:", e)
|
47 |
|
48 |
pipe = pipe.to(device)
|
49 |
return pipe, safety_checker, image_processor
|
|
|
53 |
def generate_image(
|
54 |
prompt,
|
55 |
seed=42,
|
56 |
+
width=512, # Lowered default resolution
|
57 |
+
height=512, # Lowered default resolution
|
58 |
guidance_scale=6,
|
59 |
steps=28,
|
60 |
progress=gr.Progress()
|
|
|
64 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
65 |
generator = torch.Generator(device=device).manual_seed(seed)
|
66 |
|
67 |
+
# Auto-add the trigger word if not already present
|
68 |
if "super realism" not in prompt.lower():
|
69 |
prompt = f"Super Realism, {prompt}"
|
70 |
|
|
|
71 |
def update_progress(step, timestep, latents):
|
72 |
progress((step + 1) / steps, desc="Generating image...")
|
73 |
|
|
|
84 |
image = result.images[0]
|
85 |
|
86 |
progress(1, desc="Safety checking...")
|
|
|
87 |
safety_input = image_processor(image, return_tensors="pt")
|
88 |
np_image = np.array(image)
|
89 |
|
90 |
+
# Run safety checker; it returns a tuple where the second element is nsfw flags
|
91 |
_, nsfw_detected = safety_checker(
|
92 |
+
images=[np_image],
|
93 |
clip_input=safety_input.pixel_values
|
94 |
)
|
95 |
|
|
|
108 |
with gr.Column():
|
109 |
prompt_input = gr.Textbox(label="Prompt", value="A portrait of a person")
|
110 |
seed_input = gr.Slider(0, 1000, value=42, label="Seed")
|
111 |
+
# Lower the resolution slider range for less memory-intensive generation
|
112 |
+
width_input = gr.Slider(256, 1024, value=512, label="Width")
|
113 |
+
height_input = gr.Slider(256, 1024, value=512, label="Height")
|
114 |
guidance_input = gr.Slider(1, 20, value=6, label="Guidance Scale")
|
115 |
steps_input = gr.Slider(10, 100, value=28, label="Steps")
|
116 |
submit = gr.Button("Generate")
|
|
|
125 |
outputs=[output_image, status]
|
126 |
)
|
127 |
|
128 |
+
# Use queue without GPU-specific parameters
|
129 |
app.queue(max_size=3).launch()
|