Spaces:
Runtime error
Runtime error
Anurag Bhardwaj
commited on
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,22 +6,21 @@ from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
|
|
| 6 |
from functools import lru_cache
|
| 7 |
from PIL import Image
|
| 8 |
|
| 9 |
-
from torchvision import transforms
|
| 10 |
from transformers import CLIPImageProcessor # Updated per deprecation warning
|
| 11 |
-
|
| 12 |
|
| 13 |
|
| 14 |
@lru_cache(maxsize=1)
|
| 15 |
def load_pipeline():
|
| 16 |
-
# Determine device and
|
| 17 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 18 |
torch_dtype = torch.bfloat16 if device.type == "cuda" else torch.float32
|
| 19 |
|
| 20 |
-
# Load base model with the appropriate dtype
|
| 21 |
base_model = "black-forest-labs/FLUX.1-dev"
|
| 22 |
pipe = DiffusionPipeline.from_pretrained(
|
| 23 |
base_model,
|
| 24 |
-
torch_dtype=torch_dtype
|
|
|
|
| 25 |
)
|
| 26 |
|
| 27 |
# Load LoRA weights
|
|
@@ -34,12 +33,17 @@ def load_pipeline():
|
|
| 34 |
)
|
| 35 |
image_processor = CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
| 36 |
|
| 37 |
-
# Enable GPU
|
| 38 |
if device.type == "cuda":
|
| 39 |
try:
|
| 40 |
pipe.enable_xformers_memory_efficient_attention()
|
| 41 |
except Exception as e:
|
| 42 |
print("Warning: Could not enable xformers memory efficient attention:", e)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
pipe = pipe.to(device)
|
| 45 |
return pipe, safety_checker, image_processor
|
|
@@ -49,8 +53,8 @@ pipe, safety_checker, image_processor = load_pipeline()
|
|
| 49 |
def generate_image(
|
| 50 |
prompt,
|
| 51 |
seed=42,
|
| 52 |
-
width=
|
| 53 |
-
height=
|
| 54 |
guidance_scale=6,
|
| 55 |
steps=28,
|
| 56 |
progress=gr.Progress()
|
|
@@ -60,11 +64,10 @@ def generate_image(
|
|
| 60 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 61 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 62 |
|
| 63 |
-
#
|
| 64 |
if "super realism" not in prompt.lower():
|
| 65 |
prompt = f"Super Realism, {prompt}"
|
| 66 |
|
| 67 |
-
# Define a callback to update progress
|
| 68 |
def update_progress(step, timestep, latents):
|
| 69 |
progress((step + 1) / steps, desc="Generating image...")
|
| 70 |
|
|
@@ -81,13 +84,12 @@ def generate_image(
|
|
| 81 |
image = result.images[0]
|
| 82 |
|
| 83 |
progress(1, desc="Safety checking...")
|
| 84 |
-
# Preprocess the image for safety checking
|
| 85 |
safety_input = image_processor(image, return_tensors="pt")
|
| 86 |
np_image = np.array(image)
|
| 87 |
|
| 88 |
-
# Run the
|
| 89 |
_, nsfw_detected = safety_checker(
|
| 90 |
-
images=[np_image],
|
| 91 |
clip_input=safety_input.pixel_values
|
| 92 |
)
|
| 93 |
|
|
@@ -106,8 +108,9 @@ with gr.Blocks() as app:
|
|
| 106 |
with gr.Column():
|
| 107 |
prompt_input = gr.Textbox(label="Prompt", value="A portrait of a person")
|
| 108 |
seed_input = gr.Slider(0, 1000, value=42, label="Seed")
|
| 109 |
-
|
| 110 |
-
|
|
|
|
| 111 |
guidance_input = gr.Slider(1, 20, value=6, label="Guidance Scale")
|
| 112 |
steps_input = gr.Slider(10, 100, value=28, label="Steps")
|
| 113 |
submit = gr.Button("Generate")
|
|
@@ -122,5 +125,5 @@ with gr.Blocks() as app:
|
|
| 122 |
outputs=[output_image, status]
|
| 123 |
)
|
| 124 |
|
| 125 |
-
#
|
| 126 |
app.queue(max_size=3).launch()
|
|
|
|
| 6 |
from functools import lru_cache
|
| 7 |
from PIL import Image
|
| 8 |
|
|
|
|
| 9 |
from transformers import CLIPImageProcessor # Updated per deprecation warning
|
| 10 |
+
|
| 11 |
|
| 12 |
|
| 13 |
@lru_cache(maxsize=1)
|
| 14 |
def load_pipeline():
|
| 15 |
+
# Determine device and appropriate torch_dtype
|
| 16 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 17 |
torch_dtype = torch.bfloat16 if device.type == "cuda" else torch.float32
|
| 18 |
|
|
|
|
| 19 |
base_model = "black-forest-labs/FLUX.1-dev"
|
| 20 |
pipe = DiffusionPipeline.from_pretrained(
|
| 21 |
base_model,
|
| 22 |
+
torch_dtype=torch_dtype,
|
| 23 |
+
low_cpu_mem_usage=True # Reduce memory usage during load
|
| 24 |
)
|
| 25 |
|
| 26 |
# Load LoRA weights
|
|
|
|
| 33 |
)
|
| 34 |
image_processor = CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
| 35 |
|
| 36 |
+
# Enable GPU optimizations if on GPU; else, try sequential offloading on CPU
|
| 37 |
if device.type == "cuda":
|
| 38 |
try:
|
| 39 |
pipe.enable_xformers_memory_efficient_attention()
|
| 40 |
except Exception as e:
|
| 41 |
print("Warning: Could not enable xformers memory efficient attention:", e)
|
| 42 |
+
else:
|
| 43 |
+
try:
|
| 44 |
+
pipe.enable_sequential_cpu_offload()
|
| 45 |
+
except Exception as e:
|
| 46 |
+
print("Warning: Could not enable sequential CPU offload:", e)
|
| 47 |
|
| 48 |
pipe = pipe.to(device)
|
| 49 |
return pipe, safety_checker, image_processor
|
|
|
|
| 53 |
def generate_image(
|
| 54 |
prompt,
|
| 55 |
seed=42,
|
| 56 |
+
width=512, # Lowered default resolution
|
| 57 |
+
height=512, # Lowered default resolution
|
| 58 |
guidance_scale=6,
|
| 59 |
steps=28,
|
| 60 |
progress=gr.Progress()
|
|
|
|
| 64 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 65 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 66 |
|
| 67 |
+
# Auto-add the trigger word if not already present
|
| 68 |
if "super realism" not in prompt.lower():
|
| 69 |
prompt = f"Super Realism, {prompt}"
|
| 70 |
|
|
|
|
| 71 |
def update_progress(step, timestep, latents):
|
| 72 |
progress((step + 1) / steps, desc="Generating image...")
|
| 73 |
|
|
|
|
| 84 |
image = result.images[0]
|
| 85 |
|
| 86 |
progress(1, desc="Safety checking...")
|
|
|
|
| 87 |
safety_input = image_processor(image, return_tensors="pt")
|
| 88 |
np_image = np.array(image)
|
| 89 |
|
| 90 |
+
# Run safety checker; it returns a tuple where the second element is nsfw flags
|
| 91 |
_, nsfw_detected = safety_checker(
|
| 92 |
+
images=[np_image],
|
| 93 |
clip_input=safety_input.pixel_values
|
| 94 |
)
|
| 95 |
|
|
|
|
| 108 |
with gr.Column():
|
| 109 |
prompt_input = gr.Textbox(label="Prompt", value="A portrait of a person")
|
| 110 |
seed_input = gr.Slider(0, 1000, value=42, label="Seed")
|
| 111 |
+
# Lower the resolution slider range for less memory-intensive generation
|
| 112 |
+
width_input = gr.Slider(256, 1024, value=512, label="Width")
|
| 113 |
+
height_input = gr.Slider(256, 1024, value=512, label="Height")
|
| 114 |
guidance_input = gr.Slider(1, 20, value=6, label="Guidance Scale")
|
| 115 |
steps_input = gr.Slider(10, 100, value=28, label="Steps")
|
| 116 |
submit = gr.Button("Generate")
|
|
|
|
| 125 |
outputs=[output_image, status]
|
| 126 |
)
|
| 127 |
|
| 128 |
+
# Use queue without GPU-specific parameters
|
| 129 |
app.queue(max_size=3).launch()
|