Spaces:
Running
on
Zero
Running
on
Zero
Anurag Bhardwaj
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -7,16 +7,21 @@ from functools import lru_cache
|
|
7 |
from PIL import Image
|
8 |
|
9 |
from torchvision import transforms
|
10 |
-
from transformers import CLIPImageProcessor # Updated
|
|
|
11 |
|
12 |
|
13 |
@lru_cache(maxsize=1)
|
14 |
def load_pipeline():
|
15 |
-
#
|
|
|
|
|
|
|
|
|
16 |
base_model = "black-forest-labs/FLUX.1-dev"
|
17 |
pipe = DiffusionPipeline.from_pretrained(
|
18 |
base_model,
|
19 |
-
torch_dtype=
|
20 |
)
|
21 |
|
22 |
# Load LoRA weights
|
@@ -29,12 +34,14 @@ def load_pipeline():
|
|
29 |
)
|
30 |
image_processor = CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
31 |
|
32 |
-
#
|
33 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
34 |
if device.type == "cuda":
|
35 |
-
|
36 |
-
|
|
|
|
|
37 |
|
|
|
38 |
return pipe, safety_checker, image_processor
|
39 |
|
40 |
pipe, safety_checker, image_processor = load_pipeline()
|
@@ -53,11 +60,11 @@ def generate_image(
|
|
53 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
54 |
generator = torch.Generator(device=device).manual_seed(seed)
|
55 |
|
56 |
-
#
|
57 |
if "super realism" not in prompt.lower():
|
58 |
prompt = f"Super Realism, {prompt}"
|
59 |
|
60 |
-
# Define
|
61 |
def update_progress(step, timestep, latents):
|
62 |
progress((step + 1) / steps, desc="Generating image...")
|
63 |
|
@@ -74,11 +81,11 @@ def generate_image(
|
|
74 |
image = result.images[0]
|
75 |
|
76 |
progress(1, desc="Safety checking...")
|
77 |
-
# Preprocess image for safety checking
|
78 |
safety_input = image_processor(image, return_tensors="pt")
|
79 |
np_image = np.array(image)
|
80 |
|
81 |
-
#
|
82 |
_, nsfw_detected = safety_checker(
|
83 |
images=[np_image],
|
84 |
clip_input=safety_input.pixel_values
|
@@ -115,9 +122,5 @@ with gr.Blocks() as app:
|
|
115 |
outputs=[output_image, status]
|
116 |
)
|
117 |
|
118 |
-
#
|
119 |
app.queue(max_size=3).launch()
|
120 |
-
|
121 |
-
# Uncomment for advanced multiple GPU support:
|
122 |
-
# pipe.enable_model_cpu_offload()
|
123 |
-
# pipe.enable_sequential_cpu_offload()
|
|
|
7 |
from PIL import Image
|
8 |
|
9 |
from torchvision import transforms
|
10 |
+
from transformers import CLIPImageProcessor # Updated per deprecation warning
|
11 |
+
import os
|
12 |
|
13 |
|
14 |
@lru_cache(maxsize=1)
|
15 |
def load_pipeline():
|
16 |
+
# Determine device and set torch_dtype accordingly
|
17 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
18 |
+
torch_dtype = torch.bfloat16 if device.type == "cuda" else torch.float32
|
19 |
+
|
20 |
+
# Load base model with the appropriate dtype
|
21 |
base_model = "black-forest-labs/FLUX.1-dev"
|
22 |
pipe = DiffusionPipeline.from_pretrained(
|
23 |
base_model,
|
24 |
+
torch_dtype=torch_dtype
|
25 |
)
|
26 |
|
27 |
# Load LoRA weights
|
|
|
34 |
)
|
35 |
image_processor = CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
36 |
|
37 |
+
# Enable GPU-only optimizations if a GPU is available
|
|
|
38 |
if device.type == "cuda":
|
39 |
+
try:
|
40 |
+
pipe.enable_xformers_memory_efficient_attention()
|
41 |
+
except Exception as e:
|
42 |
+
print("Warning: Could not enable xformers memory efficient attention:", e)
|
43 |
|
44 |
+
pipe = pipe.to(device)
|
45 |
return pipe, safety_checker, image_processor
|
46 |
|
47 |
pipe, safety_checker, image_processor = load_pipeline()
|
|
|
60 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
61 |
generator = torch.Generator(device=device).manual_seed(seed)
|
62 |
|
63 |
+
# Ensure the trigger word is present
|
64 |
if "super realism" not in prompt.lower():
|
65 |
prompt = f"Super Realism, {prompt}"
|
66 |
|
67 |
+
# Define a callback to update progress
|
68 |
def update_progress(step, timestep, latents):
|
69 |
progress((step + 1) / steps, desc="Generating image...")
|
70 |
|
|
|
81 |
image = result.images[0]
|
82 |
|
83 |
progress(1, desc="Safety checking...")
|
84 |
+
# Preprocess the image for safety checking
|
85 |
safety_input = image_processor(image, return_tensors="pt")
|
86 |
np_image = np.array(image)
|
87 |
|
88 |
+
# Run the safety checker
|
89 |
_, nsfw_detected = safety_checker(
|
90 |
images=[np_image],
|
91 |
clip_input=safety_input.pixel_values
|
|
|
122 |
outputs=[output_image, status]
|
123 |
)
|
124 |
|
125 |
+
# Queue without GPU-specific arguments
|
126 |
app.queue(max_size=3).launch()
|
|
|
|
|
|
|
|