Spaces:
Runtime error
Runtime error
File size: 5,897 Bytes
2e528e6 20917cf 2e528e6 20917cf 2e528e6 a69ae8e 8afab49 a69ae8e 2e528e6 957670c a69ae8e 62e7d87 2e528e6 a69ae8e 8afab49 a69ae8e 8afab49 a69ae8e 8afab49 a69ae8e 62e7d87 2e528e6 957670c 62e7d87 002b9bb 2e528e6 62e7d87 2e528e6 a69ae8e 8afab49 3ef25da 8afab49 957670c a69ae8e 2e528e6 957670c 93bb1db a69ae8e 62e7d87 2e528e6 957670c a69ae8e 957670c 2e528e6 62e7d87 2e528e6 957670c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
import gradio as gr
import os, gc, torch
from datetime import datetime
from huggingface_hub import hf_hub_download
from pynvml import *
nvmlInit()
gpu_h = nvmlDeviceGetHandleByIndex(0)
ctx_limit = 1024
title1 = "RWKV-4-Raven-7B-v8-Eng-20230408-ctx4096"
os.environ["RWKV_JIT_ON"] = '1'
os.environ["RWKV_CUDA_ON"] = '1' # if '1' then use CUDA kernel for seq mode (much faster)
from rwkv.model import RWKV
model_path = hf_hub_download(repo_id="BlinkDL/rwkv-4-raven", filename=f"{title1}.pth")
model = RWKV(model=model_path, strategy='cuda fp16i8 *8 -> cuda fp16')
from rwkv.utils import PIPELINE, PIPELINE_ARGS
pipeline = PIPELINE(model, "20B_tokenizer.json")
from TTS.api import TTS
tts = TTS(model_name="tts_models/multilingual/multi-dataset/your_tts", progress_bar=False, gpu=True)
import whisper
model1 = whisper.load_model("small")
os.system('pip install voicefixer --upgrade')
from voicefixer import VoiceFixer
voicefixer = VoiceFixer()
import torchaudio
from speechbrain.pretrained import SpectralMaskEnhancement
enhance_model = SpectralMaskEnhancement.from_hparams(
source="speechbrain/metricgan-plus-voicebank",
savedir="pretrained_models/metricgan-plus-voicebank",
run_opts={"device":"cuda"},
)
def generate_prompt(instruction, input=None):
if input:
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
# Instruction:
{instruction}
# Input:
{input}
# Response:
"""
else:
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
# Instruction:
{instruction}
# Response:
"""
def evaluate(
upload,
audio,
# instruction,
# input=None,
# token_count=200,
# temperature=1.0,
# top_p=0.7,
# presencePenalty = 0.1,
# countPenalty = 0.1,
):
audio = whisper.load_audio(audio)
audio = whisper.pad_or_trim(audio)
# make log-Mel spectrogram and move to the same device as the model1
mel = whisper.log_mel_spectrogram(audio).to(model1.device)
# detect the spoken language
_, probs = model1.detect_language(mel)
print(f"Detected language: {max(probs, key=probs.get)}")
# decode the audio
options = whisper.DecodingOptions()
result = whisper.decode(model1, mel, options)
res = []
args = PIPELINE_ARGS(temperature = max(0.2, float(1)), top_p = float(0.5),
alpha_frequency = 0.4,
alpha_presence = 0.4,
token_ban = [], # ban the generation of some tokens
token_stop = [0]) # stop generation whenever you see any token here
instruction = result.text.strip()
input=None
# input = input.strip()
ctx = generate_prompt(instruction, input)
gpu_info = nvmlDeviceGetMemoryInfo(gpu_h)
print(f'vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}')
all_tokens = []
out_last = 0
out_str = ''
occurrence = {}
state = None
for i in range(int(150)):
out, state = model.forward(pipeline.encode(ctx)[-ctx_limit:] if i == 0 else [token], state)
for n in occurrence:
out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)
token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p)
if token in args.token_stop:
break
all_tokens += [token]
if token not in occurrence:
occurrence[token] = 1
else:
occurrence[token] += 1
tmp = pipeline.decode(all_tokens[out_last:])
if '\ufffd' not in tmp:
out_str += tmp
yield out_str.strip()
out_last = i + 1
gc.collect()
torch.cuda.empty_cache()
res.append(out_str.strip())
# res1 = ''.join(str(x) for x in res)
tts.tts_to_file(res, speaker_wav = upload, language="en", file_path="output.wav")
voicefixer.restore(input="output.wav", # input wav file path
output="audio1.wav", # output wav file path
cuda=True, # whether to use gpu acceleration
mode = 0) # You can try out mode 0, 1, or 2 to find out the best result
noisy = enhance_model.load_audio(
"audio1.wav"
).unsqueeze(0)
enhanced = enhance_model.enhance_batch(noisy, lengths=torch.tensor([1.]))
torchaudio.save("enhanced.wav", enhanced.cpu(), 16000)
return [result.text, res, "enhanced.wav"]
# yield out_str.strip()
g = gr.Interface(
fn=evaluate,
inputs=[
gr.Audio(source="upload", label = "请上传您喜欢的声音(wav文件)", type="filepath"),
gr.Audio(source="microphone", label = "和您的专属AI聊天吧!", type="filepath"),
# gr.components.Textbox(lines=2, label="Instruction", value="Tell me about ravens."),
# gr.components.Textbox(lines=2, label="Input", placeholder="none"),
# gr.components.Slider(minimum=10, maximum=200, step=10, value=150), # token_count
# gr.components.Slider(minimum=0.2, maximum=2.0, step=0.1, value=1.0), # temperature
# gr.components.Slider(minimum=0, maximum=1, step=0.05, value=0.5), # top_p
# gr.components.Slider(0.0, 1.0, step=0.1, value=0.4), # presencePenalty
# gr.components.Slider(0.0, 1.0, step=0.1, value=0.4), # countPenalty
],
outputs=[
gr.Textbox(label="Speech to Text"),
gr.Textbox(label="Raven Output"),
gr.Audio(label="Audio with Custom Voice"),
],
title="🥳💬💕 - TalktoAI,随时随地,谈天说地!",
description="🤖 - 让有人文关怀的AI造福每一个人!AI向善,文明璀璨!TalktoAI - Enable the future!",
article = "Powered by the RWKV Language Model"
)
g.queue(concurrency_count=1, max_size=10)
g.launch(show_error=True) |