Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -17,6 +17,24 @@ model = RWKV(model=model_path, strategy='cuda fp16i8 *8 -> cuda fp16')
|
|
| 17 |
from rwkv.utils import PIPELINE, PIPELINE_ARGS
|
| 18 |
pipeline = PIPELINE(model, "20B_tokenizer.json")
|
| 19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
def generate_prompt(instruction, input=None):
|
| 21 |
if input:
|
| 22 |
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
|
@@ -39,7 +57,9 @@ def generate_prompt(instruction, input=None):
|
|
| 39 |
"""
|
| 40 |
|
| 41 |
def evaluate(
|
| 42 |
-
|
|
|
|
|
|
|
| 43 |
# input=None,
|
| 44 |
# token_count=200,
|
| 45 |
# temperature=1.0,
|
|
@@ -47,13 +67,30 @@ def evaluate(
|
|
| 47 |
# presencePenalty = 0.1,
|
| 48 |
# countPenalty = 0.1,
|
| 49 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
args = PIPELINE_ARGS(temperature = max(0.2, float(1)), top_p = float(0.5),
|
| 51 |
alpha_frequency = 0.4,
|
| 52 |
alpha_presence = 0.4,
|
| 53 |
token_ban = [], # ban the generation of some tokens
|
| 54 |
token_stop = [0]) # stop generation whenever you see any token here
|
| 55 |
|
| 56 |
-
instruction =
|
| 57 |
input=None
|
| 58 |
# input = input.strip()
|
| 59 |
ctx = generate_prompt(instruction, input)
|
|
@@ -87,12 +124,33 @@ def evaluate(
|
|
| 87 |
out_last = i + 1
|
| 88 |
gc.collect()
|
| 89 |
torch.cuda.empty_cache()
|
| 90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
|
| 92 |
g = gr.Interface(
|
| 93 |
fn=evaluate,
|
| 94 |
inputs=[
|
| 95 |
-
gr.
|
|
|
|
|
|
|
| 96 |
# gr.components.Textbox(lines=2, label="Input", placeholder="none"),
|
| 97 |
# gr.components.Slider(minimum=10, maximum=200, step=10, value=150), # token_count
|
| 98 |
# gr.components.Slider(minimum=0.2, maximum=2.0, step=0.1, value=1.0), # temperature
|
|
@@ -101,9 +159,9 @@ g = gr.Interface(
|
|
| 101 |
# gr.components.Slider(0.0, 1.0, step=0.1, value=0.4), # countPenalty
|
| 102 |
],
|
| 103 |
outputs=[
|
| 104 |
-
gr.
|
| 105 |
-
|
| 106 |
-
|
| 107 |
)
|
| 108 |
],
|
| 109 |
title="🥳💬💕 - TalktoAI,随时随地,谈天说地!",
|
|
|
|
| 17 |
from rwkv.utils import PIPELINE, PIPELINE_ARGS
|
| 18 |
pipeline = PIPELINE(model, "20B_tokenizer.json")
|
| 19 |
|
| 20 |
+
from TTS.api import TTS
|
| 21 |
+
tts = TTS(model_name="tts_models/multilingual/multi-dataset/your_tts", progress_bar=False, gpu=True)
|
| 22 |
+
import whisper
|
| 23 |
+
model = whisper.load_model("small")
|
| 24 |
+
|
| 25 |
+
os.system('pip install voicefixer --upgrade')
|
| 26 |
+
from voicefixer import VoiceFixer
|
| 27 |
+
voicefixer = VoiceFixer()
|
| 28 |
+
|
| 29 |
+
import torchaudio
|
| 30 |
+
from speechbrain.pretrained import SpectralMaskEnhancement
|
| 31 |
+
|
| 32 |
+
enhance_model = SpectralMaskEnhancement.from_hparams(
|
| 33 |
+
source="speechbrain/metricgan-plus-voicebank",
|
| 34 |
+
savedir="pretrained_models/metricgan-plus-voicebank",
|
| 35 |
+
run_opts={"device":"cuda"},
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
def generate_prompt(instruction, input=None):
|
| 39 |
if input:
|
| 40 |
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
|
|
|
| 57 |
"""
|
| 58 |
|
| 59 |
def evaluate(
|
| 60 |
+
upload,
|
| 61 |
+
audio,
|
| 62 |
+
# instruction,
|
| 63 |
# input=None,
|
| 64 |
# token_count=200,
|
| 65 |
# temperature=1.0,
|
|
|
|
| 67 |
# presencePenalty = 0.1,
|
| 68 |
# countPenalty = 0.1,
|
| 69 |
):
|
| 70 |
+
|
| 71 |
+
audio = whisper.load_audio(audio)
|
| 72 |
+
audio = whisper.pad_or_trim(audio)
|
| 73 |
+
|
| 74 |
+
# make log-Mel spectrogram and move to the same device as the model
|
| 75 |
+
mel = whisper.log_mel_spectrogram(audio).to(model.device)
|
| 76 |
+
|
| 77 |
+
# detect the spoken language
|
| 78 |
+
_, probs = model.detect_language(mel)
|
| 79 |
+
print(f"Detected language: {max(probs, key=probs.get)}")
|
| 80 |
+
|
| 81 |
+
# decode the audio
|
| 82 |
+
options = whisper.DecodingOptions()
|
| 83 |
+
result = whisper.decode(model, mel, options)
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
res = []
|
| 87 |
args = PIPELINE_ARGS(temperature = max(0.2, float(1)), top_p = float(0.5),
|
| 88 |
alpha_frequency = 0.4,
|
| 89 |
alpha_presence = 0.4,
|
| 90 |
token_ban = [], # ban the generation of some tokens
|
| 91 |
token_stop = [0]) # stop generation whenever you see any token here
|
| 92 |
|
| 93 |
+
instruction = result.text.strip()
|
| 94 |
input=None
|
| 95 |
# input = input.strip()
|
| 96 |
ctx = generate_prompt(instruction, input)
|
|
|
|
| 124 |
out_last = i + 1
|
| 125 |
gc.collect()
|
| 126 |
torch.cuda.empty_cache()
|
| 127 |
+
|
| 128 |
+
res.append(out_str.strip())
|
| 129 |
+
|
| 130 |
+
tts.tts_to_file(res, speaker_wav = upload, language="en", file_path="output.wav")
|
| 131 |
+
|
| 132 |
+
voicefixer.restore(input="output.wav", # input wav file path
|
| 133 |
+
output="audio1.wav", # output wav file path
|
| 134 |
+
cuda=True, # whether to use gpu acceleration
|
| 135 |
+
mode = 0) # You can try out mode 0, 1, or 2 to find out the best result
|
| 136 |
+
|
| 137 |
+
noisy = enhance_model.load_audio(
|
| 138 |
+
"audio1.wav"
|
| 139 |
+
).unsqueeze(0)
|
| 140 |
+
|
| 141 |
+
enhanced = enhance_model.enhance_batch(noisy, lengths=torch.tensor([1.]))
|
| 142 |
+
torchaudio.save("enhanced.wav", enhanced.cpu(), 16000)
|
| 143 |
+
|
| 144 |
+
return [result.text, res, "enhanced.wav"]
|
| 145 |
+
|
| 146 |
+
# yield out_str.strip()
|
| 147 |
|
| 148 |
g = gr.Interface(
|
| 149 |
fn=evaluate,
|
| 150 |
inputs=[
|
| 151 |
+
gr.Audio(source="upload", label = "请上传您喜欢的声音(wav文件)", type="filepath"),
|
| 152 |
+
gr.Audio(source="microphone", label = "和您的专属AI聊天吧!", type="filepath"),
|
| 153 |
+
# gr.components.Textbox(lines=2, label="Instruction", value="Tell me about ravens."),
|
| 154 |
# gr.components.Textbox(lines=2, label="Input", placeholder="none"),
|
| 155 |
# gr.components.Slider(minimum=10, maximum=200, step=10, value=150), # token_count
|
| 156 |
# gr.components.Slider(minimum=0.2, maximum=2.0, step=0.1, value=1.0), # temperature
|
|
|
|
| 159 |
# gr.components.Slider(0.0, 1.0, step=0.1, value=0.4), # countPenalty
|
| 160 |
],
|
| 161 |
outputs=[
|
| 162 |
+
gr.Textbox(label="Speech to Text"),
|
| 163 |
+
gr.Textbox(label="Raven Output"),
|
| 164 |
+
gr.Audio(label="Audio with Custom Voice"),
|
| 165 |
)
|
| 166 |
],
|
| 167 |
title="🥳💬💕 - TalktoAI,随时随地,谈天说地!",
|