Spaces:
No application file
No application file
Upload app.py
Browse files
app.py
CHANGED
@@ -107,4 +107,113 @@ def main():
|
|
107 |
|
108 |
if __name__ == "__main__":
|
109 |
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
|
|
107 |
|
108 |
if __name__ == "__main__":
|
109 |
main()
|
110 |
+
import streamlit as st
|
111 |
+
from sentence_transformers import SentenceTransformer, util
|
112 |
+
from sklearn.decomposition import LatentDirichletAllocation
|
113 |
+
from sklearn.feature_extraction.text import CountVectorizer
|
114 |
+
from sklearn.manifold import TSNE
|
115 |
+
from langdetect import detect, DetectorFactory
|
116 |
+
import numpy as np
|
117 |
+
import matplotlib.pyplot as plt
|
118 |
+
import pandas as pd
|
119 |
+
|
120 |
+
DetectorFactory.seed = 0
|
121 |
+
|
122 |
+
# Load models for embedding and similarity
|
123 |
+
multi_embedding_model = SentenceTransformer('distiluse-base-multilingual-cased-v1')
|
124 |
+
|
125 |
+
class WordEmbeddingAgent:
|
126 |
+
def __init__(self, model):
|
127 |
+
self.model = model
|
128 |
+
|
129 |
+
def get_embeddings(self, words):
|
130 |
+
return self.model.encode(words)
|
131 |
+
|
132 |
+
class SimilarityAgent:
|
133 |
+
def __init__(self, model):
|
134 |
+
self.model = model
|
135 |
+
|
136 |
+
def compute_similarity(self, text1, text2):
|
137 |
+
embedding1 = self.model.encode(text1, convert_to_tensor=True)
|
138 |
+
embedding2 = self.model.encode(text2, convert_to_tensor=True)
|
139 |
+
return util.pytorch_cos_sim(embedding1, embedding2).item()
|
140 |
+
|
141 |
+
class TopicModelingAgent:
|
142 |
+
def __init__(self, n_components=10):
|
143 |
+
self.lda_model = LatentDirichletAllocation(n_components=n_components, random_state=42)
|
144 |
+
|
145 |
+
def fit_transform(self, texts, lang):
|
146 |
+
stop_words = 'english' if lang == 'en' else 'spanish'
|
147 |
+
vectorizer = CountVectorizer(max_df=0.9, min_df=2, stop_words=stop_words)
|
148 |
+
dtm = vectorizer.fit_transform(texts)
|
149 |
+
self.lda_model.fit(dtm)
|
150 |
+
return self.lda_model.transform(dtm), vectorizer
|
151 |
+
|
152 |
+
def get_topics(self, vectorizer, num_words=10):
|
153 |
+
topics = {}
|
154 |
+
for idx, topic in enumerate(self.lda_model.components_):
|
155 |
+
topics[idx] = [vectorizer.get_feature_names_out()[i] for i in topic.argsort()[-num_words:]]
|
156 |
+
return topics
|
157 |
+
|
158 |
+
def detect_language(text):
|
159 |
+
try:
|
160 |
+
return detect(text)
|
161 |
+
except:
|
162 |
+
return "unknown"
|
163 |
+
|
164 |
+
def tsne_visualization(embeddings, words):
|
165 |
+
tsne = TSNE(n_components=2, random_state=42)
|
166 |
+
embeddings_2d = tsne.fit_transform(embeddings)
|
167 |
+
df = pd.DataFrame(embeddings_2d, columns=['x', 'y'])
|
168 |
+
df['word'] = words
|
169 |
+
return df
|
170 |
+
|
171 |
+
def main():
|
172 |
+
st.title("Multilingual Text Analysis System")
|
173 |
+
user_input = st.text_area("Enter your text here:")
|
174 |
+
|
175 |
+
if st.button("Analyze"):
|
176 |
+
if user_input:
|
177 |
+
lang = detect_language(user_input)
|
178 |
+
st.write(f"Detected language: {lang}")
|
179 |
+
|
180 |
+
embedding_agent = WordEmbeddingAgent(multi_embedding_model)
|
181 |
+
similarity_agent = SimilarityAgent(multi_embedding_model)
|
182 |
+
topic_modeling_agent = TopicModelingAgent()
|
183 |
+
|
184 |
+
# Tokenize the input text into words
|
185 |
+
words = user_input.split()
|
186 |
+
|
187 |
+
# Generate Embeddings
|
188 |
+
embeddings = embedding_agent.get_embeddings(words)
|
189 |
+
st.write("Word Embeddings Generated.")
|
190 |
+
|
191 |
+
# t-SNE Visualization
|
192 |
+
tsne_df = tsne_visualization(embeddings, words)
|
193 |
+
fig, ax = plt.subplots()
|
194 |
+
ax.scatter(tsne_df['x'], tsne_df['y'])
|
195 |
+
|
196 |
+
for i, word in enumerate(tsne_df['word']):
|
197 |
+
ax.annotate(word, (tsne_df['x'][i], tsne_df['y'][i]))
|
198 |
+
|
199 |
+
st.pyplot(fig)
|
200 |
+
|
201 |
+
# Topic Modeling
|
202 |
+
texts = [user_input, "Another text to improve topic modeling."]
|
203 |
+
topic_distr, vectorizer = topic_modeling_agent.fit_transform(texts, lang)
|
204 |
+
topics = topic_modeling_agent.get_topics(vectorizer)
|
205 |
+
st.write("Topics Extracted:")
|
206 |
+
for topic, words in topics.items():
|
207 |
+
st.write(f"Topic {topic}: {', '.join(words)}")
|
208 |
+
|
209 |
+
# Sentence Similarity (example with another text)
|
210 |
+
text2 = "Otro texto de ejemplo para comparaci贸n de similitud." if lang != 'en' else "Another example text for similarity comparison."
|
211 |
+
similarity_score = similarity_agent.compute_similarity(user_input, text2)
|
212 |
+
st.write(f"Similarity Score with example text: {similarity_score:.4f}")
|
213 |
+
|
214 |
+
else:
|
215 |
+
st.warning("Please enter some text to analyze.")
|
216 |
+
|
217 |
+
if __name__ == "__main__":
|
218 |
+
main()
|
219 |
|