Spaces:
No application file
No application file
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from sentence_transformers import SentenceTransformer, util
|
| 3 |
+
from sklearn.decomposition import LatentDirichletAllocation
|
| 4 |
+
from sklearn.feature_extraction.text import CountVectorizer
|
| 5 |
+
from sklearn.manifold import TSNE
|
| 6 |
+
from langdetect import detect, DetectorFactory
|
| 7 |
+
import numpy as np
|
| 8 |
+
import matplotlib.pyplot as plt
|
| 9 |
+
import pandas as pd
|
| 10 |
+
|
| 11 |
+
DetectorFactory.seed = 0
|
| 12 |
+
|
| 13 |
+
# Load models for embedding and similarity
|
| 14 |
+
multi_embedding_model = SentenceTransformer('distiluse-base-multilingual-cased-v1')
|
| 15 |
+
|
| 16 |
+
class WordEmbeddingAgent:
|
| 17 |
+
def __init__(self, model):
|
| 18 |
+
self.model = model
|
| 19 |
+
|
| 20 |
+
def get_embeddings(self, words):
|
| 21 |
+
return self.model.encode(words)
|
| 22 |
+
|
| 23 |
+
class SimilarityAgent:
|
| 24 |
+
def __init__(self, model):
|
| 25 |
+
self.model = model
|
| 26 |
+
|
| 27 |
+
def compute_similarity(self, text1, text2):
|
| 28 |
+
embedding1 = self.model.encode(text1, convert_to_tensor=True)
|
| 29 |
+
embedding2 = self.model.encode(text2, convert_to_tensor=True)
|
| 30 |
+
return util.pytorch_cos_sim(embedding1, embedding2).item()
|
| 31 |
+
|
| 32 |
+
class TopicModelingAgent:
|
| 33 |
+
def __init__(self, n_components=10):
|
| 34 |
+
self.lda_model = LatentDirichletAllocation(n_components=n_components, random_state=42)
|
| 35 |
+
|
| 36 |
+
def fit_transform(self, texts, lang):
|
| 37 |
+
stop_words = 'english' if lang == 'en' else 'spanish'
|
| 38 |
+
vectorizer = CountVectorizer(max_df=0.9, min_df=2, stop_words=stop_words)
|
| 39 |
+
dtm = vectorizer.fit_transform(texts)
|
| 40 |
+
self.lda_model.fit(dtm)
|
| 41 |
+
return self.lda_model.transform(dtm), vectorizer
|
| 42 |
+
|
| 43 |
+
def get_topics(self, vectorizer, num_words=10):
|
| 44 |
+
topics = {}
|
| 45 |
+
for idx, topic in enumerate(self.lda_model.components_):
|
| 46 |
+
topics[idx] = [vectorizer.get_feature_names_out()[i] for i in topic.argsort()[-num_words:]]
|
| 47 |
+
return topics
|
| 48 |
+
|
| 49 |
+
def detect_language(text):
|
| 50 |
+
try:
|
| 51 |
+
return detect(text)
|
| 52 |
+
except:
|
| 53 |
+
return "unknown"
|
| 54 |
+
|
| 55 |
+
def tsne_visualization(embeddings, words):
|
| 56 |
+
tsne = TSNE(n_components=2, random_state=42)
|
| 57 |
+
embeddings_2d = tsne.fit_transform(embeddings)
|
| 58 |
+
df = pd.DataFrame(embeddings_2d, columns=['x', 'y'])
|
| 59 |
+
df['word'] = words
|
| 60 |
+
return df
|
| 61 |
+
|
| 62 |
+
def main():
|
| 63 |
+
st.title("Multilingual Text Analysis System")
|
| 64 |
+
user_input = st.text_area("Enter your text here:")
|
| 65 |
+
|
| 66 |
+
if st.button("Analyze"):
|
| 67 |
+
if user_input:
|
| 68 |
+
lang = detect_language(user_input)
|
| 69 |
+
st.write(f"Detected language: {lang}")
|
| 70 |
+
|
| 71 |
+
embedding_agent = WordEmbeddingAgent(multi_embedding_model)
|
| 72 |
+
similarity_agent = SimilarityAgent(multi_embedding_model)
|
| 73 |
+
topic_modeling_agent = TopicModelingAgent()
|
| 74 |
+
|
| 75 |
+
# Tokenize the input text into words
|
| 76 |
+
words = user_input.split()
|
| 77 |
+
|
| 78 |
+
# Generate Embeddings
|
| 79 |
+
embeddings = embedding_agent.get_embeddings(words)
|
| 80 |
+
st.write("Word Embeddings Generated.")
|
| 81 |
+
|
| 82 |
+
# t-SNE Visualization
|
| 83 |
+
tsne_df = tsne_visualization(embeddings, words)
|
| 84 |
+
fig, ax = plt.subplots()
|
| 85 |
+
ax.scatter(tsne_df['x'], tsne_df['y'])
|
| 86 |
+
|
| 87 |
+
for i, word in enumerate(tsne_df['word']):
|
| 88 |
+
ax.annotate(word, (tsne_df['x'][i], tsne_df['y'][i]))
|
| 89 |
+
|
| 90 |
+
st.pyplot(fig)
|
| 91 |
+
|
| 92 |
+
# Topic Modeling
|
| 93 |
+
texts = [user_input, "Another text to improve topic modeling."]
|
| 94 |
+
topic_distr, vectorizer = topic_modeling_agent.fit_transform(texts, lang)
|
| 95 |
+
topics = topic_modeling_agent.get_topics(vectorizer)
|
| 96 |
+
st.write("Topics Extracted:")
|
| 97 |
+
for topic, words in topics.items():
|
| 98 |
+
st.write(f"Topic {topic}: {', '.join(words)}")
|
| 99 |
+
|
| 100 |
+
# Sentence Similarity (example with another text)
|
| 101 |
+
text2 = "Otro texto de ejemplo para comparaci贸n de similitud." if lang != 'en' else "Another example text for similarity comparison."
|
| 102 |
+
similarity_score = similarity_agent.compute_similarity(user_input, text2)
|
| 103 |
+
st.write(f"Similarity Score with example text: {similarity_score:.4f}")
|
| 104 |
+
|
| 105 |
+
else:
|
| 106 |
+
st.warning("Please enter some text to analyze.")
|
| 107 |
+
|
| 108 |
+
if __name__ == "__main__":
|
| 109 |
+
main()
|
| 110 |
+
|