Spaces:
No application file
No application file
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from sentence_transformers import SentenceTransformer, util
|
3 |
+
from sklearn.decomposition import LatentDirichletAllocation
|
4 |
+
from sklearn.feature_extraction.text import CountVectorizer
|
5 |
+
from sklearn.manifold import TSNE
|
6 |
+
from langdetect import detect, DetectorFactory
|
7 |
+
import numpy as np
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
import pandas as pd
|
10 |
+
|
11 |
+
DetectorFactory.seed = 0
|
12 |
+
|
13 |
+
# Load models for embedding and similarity
|
14 |
+
multi_embedding_model = SentenceTransformer('distiluse-base-multilingual-cased-v1')
|
15 |
+
|
16 |
+
class WordEmbeddingAgent:
|
17 |
+
def __init__(self, model):
|
18 |
+
self.model = model
|
19 |
+
|
20 |
+
def get_embeddings(self, words):
|
21 |
+
return self.model.encode(words)
|
22 |
+
|
23 |
+
class SimilarityAgent:
|
24 |
+
def __init__(self, model):
|
25 |
+
self.model = model
|
26 |
+
|
27 |
+
def compute_similarity(self, text1, text2):
|
28 |
+
embedding1 = self.model.encode(text1, convert_to_tensor=True)
|
29 |
+
embedding2 = self.model.encode(text2, convert_to_tensor=True)
|
30 |
+
return util.pytorch_cos_sim(embedding1, embedding2).item()
|
31 |
+
|
32 |
+
class TopicModelingAgent:
|
33 |
+
def __init__(self, n_components=10):
|
34 |
+
self.lda_model = LatentDirichletAllocation(n_components=n_components, random_state=42)
|
35 |
+
|
36 |
+
def fit_transform(self, texts, lang):
|
37 |
+
stop_words = 'english' if lang == 'en' else 'spanish'
|
38 |
+
vectorizer = CountVectorizer(max_df=0.9, min_df=2, stop_words=stop_words)
|
39 |
+
dtm = vectorizer.fit_transform(texts)
|
40 |
+
self.lda_model.fit(dtm)
|
41 |
+
return self.lda_model.transform(dtm), vectorizer
|
42 |
+
|
43 |
+
def get_topics(self, vectorizer, num_words=10):
|
44 |
+
topics = {}
|
45 |
+
for idx, topic in enumerate(self.lda_model.components_):
|
46 |
+
topics[idx] = [vectorizer.get_feature_names_out()[i] for i in topic.argsort()[-num_words:]]
|
47 |
+
return topics
|
48 |
+
|
49 |
+
def detect_language(text):
|
50 |
+
try:
|
51 |
+
return detect(text)
|
52 |
+
except:
|
53 |
+
return "unknown"
|
54 |
+
|
55 |
+
def tsne_visualization(embeddings, words):
|
56 |
+
tsne = TSNE(n_components=2, random_state=42)
|
57 |
+
embeddings_2d = tsne.fit_transform(embeddings)
|
58 |
+
df = pd.DataFrame(embeddings_2d, columns=['x', 'y'])
|
59 |
+
df['word'] = words
|
60 |
+
return df
|
61 |
+
|
62 |
+
def main():
|
63 |
+
st.title("Multilingual Text Analysis System")
|
64 |
+
user_input = st.text_area("Enter your text here:")
|
65 |
+
|
66 |
+
if st.button("Analyze"):
|
67 |
+
if user_input:
|
68 |
+
lang = detect_language(user_input)
|
69 |
+
st.write(f"Detected language: {lang}")
|
70 |
+
|
71 |
+
embedding_agent = WordEmbeddingAgent(multi_embedding_model)
|
72 |
+
similarity_agent = SimilarityAgent(multi_embedding_model)
|
73 |
+
topic_modeling_agent = TopicModelingAgent()
|
74 |
+
|
75 |
+
# Tokenize the input text into words
|
76 |
+
words = user_input.split()
|
77 |
+
|
78 |
+
# Generate Embeddings
|
79 |
+
embeddings = embedding_agent.get_embeddings(words)
|
80 |
+
st.write("Word Embeddings Generated.")
|
81 |
+
|
82 |
+
# t-SNE Visualization
|
83 |
+
tsne_df = tsne_visualization(embeddings, words)
|
84 |
+
fig, ax = plt.subplots()
|
85 |
+
ax.scatter(tsne_df['x'], tsne_df['y'])
|
86 |
+
|
87 |
+
for i, word in enumerate(tsne_df['word']):
|
88 |
+
ax.annotate(word, (tsne_df['x'][i], tsne_df['y'][i]))
|
89 |
+
|
90 |
+
st.pyplot(fig)
|
91 |
+
|
92 |
+
# Topic Modeling
|
93 |
+
texts = [user_input, "Another text to improve topic modeling."]
|
94 |
+
topic_distr, vectorizer = topic_modeling_agent.fit_transform(texts, lang)
|
95 |
+
topics = topic_modeling_agent.get_topics(vectorizer)
|
96 |
+
st.write("Topics Extracted:")
|
97 |
+
for topic, words in topics.items():
|
98 |
+
st.write(f"Topic {topic}: {', '.join(words)}")
|
99 |
+
|
100 |
+
# Sentence Similarity (example with another text)
|
101 |
+
text2 = "Otro texto de ejemplo para comparaci贸n de similitud." if lang != 'en' else "Another example text for similarity comparison."
|
102 |
+
similarity_score = similarity_agent.compute_similarity(user_input, text2)
|
103 |
+
st.write(f"Similarity Score with example text: {similarity_score:.4f}")
|
104 |
+
|
105 |
+
else:
|
106 |
+
st.warning("Please enter some text to analyze.")
|
107 |
+
|
108 |
+
if __name__ == "__main__":
|
109 |
+
main()
|
110 |
+
|