Spaces:
Build error
Build error
import gradio as gr | |
import torch | |
import transformers | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from PIL import Image | |
import warnings | |
# disable some warnings | |
transformers.logging.set_verbosity_error() | |
transformers.logging.disable_progress_bar() | |
warnings.filterwarnings('ignore') | |
# Set device to GPU if available, else CPU | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
print(f"Using device: {device}") | |
# Update model path to your local path | |
model_name = 'failspy/kappa-3-phi-abliterated' | |
# create model and load it to the specified device | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
torch_dtype=torch.float16, | |
device_map="auto", | |
trust_remote_code=True | |
) | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_name, | |
trust_remote_code=True | |
) | |
def inference(prompt, image, temperature, beam_size): | |
# Phi-3 uses a chat template | |
messages = [ | |
{"role": "user", "content": f"Can you describe this image?\n{prompt}"} | |
] | |
# Apply chat template and add generation prompt | |
inputs = tokenizer.apply_chat_template( | |
messages, | |
add_generation_prompt=True, | |
return_tensors="pt" | |
).to(device) | |
# Process the image | |
pixel_values = model.prepare_image(image).to(device) | |
# Add debug prints | |
print(f"Device of model: {next(model.parameters()).device}") | |
print(f"Device of inputs: {inputs.input_ids.device}") | |
print(f"Device of pixel_values: {pixel_values.device}") | |
# generate | |
with torch.cuda.amp.autocast(): | |
output_ids = model.generate( | |
inputs.input_ids, | |
pixel_values=pixel_values, | |
max_new_tokens=1024, | |
temperature=temperature, | |
num_beams=beam_size, | |
use_cache=True | |
)[0] | |
return tokenizer.decode(output_ids[inputs.input_ids.shape[1]:], skip_special_tokens=True).strip() | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
prompt_input = gr.Textbox(label="Prompt", placeholder="Describe this image in detail") | |
image_input = gr.Image(label="Image", type="pil") | |
temperature_input = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature") | |
beam_size_input = gr.Slider(minimum=1, maximum=10, value=4, step=1, label="Beam Size") | |
submit_button = gr.Button("Submit") | |
with gr.Column(): | |
output_text = gr.Textbox(label="Output") | |
submit_button.click( | |
fn=inference, | |
inputs=[prompt_input, image_input, temperature_input, beam_size_input], | |
outputs=output_text | |
) | |
demo.launch(share=True) |