Spaces:
Build error
Build error
| import gradio as gr | |
| import torch | |
| import transformers | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| from PIL import Image | |
| import warnings | |
| # disable some warnings | |
| transformers.logging.set_verbosity_error() | |
| transformers.logging.disable_progress_bar() | |
| warnings.filterwarnings('ignore') | |
| # Set device to GPU if available, else CPU | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| print(f"Using device: {device}") | |
| # Update model path to your local path | |
| model_name = 'failspy/kappa-3-phi-abliterated' | |
| # create model and load it to the specified device | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_name, | |
| torch_dtype=torch.float16, | |
| device_map="auto", | |
| trust_remote_code=True | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| model_name, | |
| trust_remote_code=True | |
| ) | |
| def inference(prompt, image, temperature, beam_size): | |
| # Phi-3 uses a chat template | |
| messages = [ | |
| {"role": "user", "content": f"Can you describe this image?\n{prompt}"} | |
| ] | |
| # Apply chat template and add generation prompt | |
| inputs = tokenizer.apply_chat_template( | |
| messages, | |
| add_generation_prompt=True, | |
| return_tensors="pt" | |
| ).to(device) | |
| # Process the image | |
| pixel_values = model.prepare_image(image).to(device) | |
| # Add debug prints | |
| print(f"Device of model: {next(model.parameters()).device}") | |
| print(f"Device of inputs: {inputs.input_ids.device}") | |
| print(f"Device of pixel_values: {pixel_values.device}") | |
| # generate | |
| with torch.cuda.amp.autocast(): | |
| output_ids = model.generate( | |
| inputs.input_ids, | |
| pixel_values=pixel_values, | |
| max_new_tokens=1024, | |
| temperature=temperature, | |
| num_beams=beam_size, | |
| use_cache=True | |
| )[0] | |
| return tokenizer.decode(output_ids[inputs.input_ids.shape[1]:], skip_special_tokens=True).strip() | |
| with gr.Blocks() as demo: | |
| with gr.Row(): | |
| with gr.Column(): | |
| prompt_input = gr.Textbox(label="Prompt", placeholder="Describe this image in detail") | |
| image_input = gr.Image(label="Image", type="pil") | |
| temperature_input = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature") | |
| beam_size_input = gr.Slider(minimum=1, maximum=10, value=4, step=1, label="Beam Size") | |
| submit_button = gr.Button("Submit") | |
| with gr.Column(): | |
| output_text = gr.Textbox(label="Output") | |
| submit_button.click( | |
| fn=inference, | |
| inputs=[prompt_input, image_input, temperature_input, beam_size_input], | |
| outputs=output_text | |
| ) | |
| demo.launch(share=True) |