Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -14,6 +14,7 @@ warnings.filterwarnings('ignore')
|
|
14 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
15 |
print(f"Using device: {device}")
|
16 |
|
|
|
17 |
model_name = 'failspy/kappa-3-phi-abliterated'
|
18 |
|
19 |
# create model and load it to the specified device
|
@@ -30,37 +31,38 @@ tokenizer = AutoTokenizer.from_pretrained(
|
|
30 |
)
|
31 |
|
32 |
def inference(prompt, image, temperature, beam_size):
|
|
|
33 |
messages = [
|
34 |
-
{"role": "user", "content": f
|
35 |
]
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1], dtype=torch.long).unsqueeze(0).to(device)
|
44 |
|
45 |
-
|
|
|
46 |
|
47 |
# Add debug prints
|
48 |
print(f"Device of model: {next(model.parameters()).device}")
|
49 |
-
print(f"Device of
|
50 |
-
print(f"Device of
|
51 |
|
52 |
# generate
|
53 |
with torch.cuda.amp.autocast():
|
54 |
output_ids = model.generate(
|
55 |
-
input_ids,
|
56 |
-
|
57 |
max_new_tokens=1024,
|
58 |
temperature=temperature,
|
59 |
num_beams=beam_size,
|
60 |
use_cache=True
|
61 |
)[0]
|
62 |
|
63 |
-
return tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip()
|
64 |
|
65 |
with gr.Blocks() as demo:
|
66 |
with gr.Row():
|
|
|
14 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
15 |
print(f"Using device: {device}")
|
16 |
|
17 |
+
# Update model path to your local path
|
18 |
model_name = 'failspy/kappa-3-phi-abliterated'
|
19 |
|
20 |
# create model and load it to the specified device
|
|
|
31 |
)
|
32 |
|
33 |
def inference(prompt, image, temperature, beam_size):
|
34 |
+
# Phi-3 uses a chat template
|
35 |
messages = [
|
36 |
+
{"role": "user", "content": f"Can you describe this image?\n{prompt}"}
|
37 |
]
|
38 |
+
|
39 |
+
# Apply chat template and add generation prompt
|
40 |
+
inputs = tokenizer.apply_chat_template(
|
41 |
+
messages,
|
42 |
+
add_generation_prompt=True,
|
43 |
+
return_tensors="pt"
|
44 |
+
).to(device)
|
|
|
45 |
|
46 |
+
# Process the image
|
47 |
+
pixel_values = model.prepare_image(image).to(device)
|
48 |
|
49 |
# Add debug prints
|
50 |
print(f"Device of model: {next(model.parameters()).device}")
|
51 |
+
print(f"Device of inputs: {inputs.input_ids.device}")
|
52 |
+
print(f"Device of pixel_values: {pixel_values.device}")
|
53 |
|
54 |
# generate
|
55 |
with torch.cuda.amp.autocast():
|
56 |
output_ids = model.generate(
|
57 |
+
inputs.input_ids,
|
58 |
+
pixel_values=pixel_values,
|
59 |
max_new_tokens=1024,
|
60 |
temperature=temperature,
|
61 |
num_beams=beam_size,
|
62 |
use_cache=True
|
63 |
)[0]
|
64 |
|
65 |
+
return tokenizer.decode(output_ids[inputs.input_ids.shape[1]:], skip_special_tokens=True).strip()
|
66 |
|
67 |
with gr.Blocks() as demo:
|
68 |
with gr.Row():
|