Spaces:
Build error
Build error
import os | |
import gradio as gr | |
import torch | |
import torch.distributed as dist | |
import transformers | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from PIL import Image | |
import warnings | |
# disable some warnings | |
transformers.logging.set_verbosity_error() | |
transformers.logging.disable_progress_bar() | |
warnings.filterwarnings('ignore') | |
def setup(rank, world_size): | |
os.environ['MASTER_ADDR'] = 'localhost' | |
os.environ['MASTER_PORT'] = '12355' | |
dist.init_process_group("nccl", rank=rank, world_size=world_size) | |
def cleanup(): | |
dist.destroy_process_group() | |
def load_model_on_gpus(model_name, num_gpus): | |
# Calculate number of layers to assign to each GPU | |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, trust_remote_code=True) | |
num_layers = len(model.model.layers) | |
layers_per_gpu = num_layers // num_gpus | |
# Assign layers to GPUs | |
device_map = {} | |
for i in range(num_layers): | |
device_map[f'model.layers.{i}'] = i // layers_per_gpu | |
# Assign other components | |
device_map['model.embed_tokens'] = 0 | |
device_map['model.norm'] = num_gpus - 1 | |
device_map['lm_head'] = num_gpus - 1 | |
return AutoModelForCausalLM.from_pretrained( | |
model_name, | |
device_map=device_map, | |
torch_dtype=torch.float16, | |
trust_remote_code=True | |
) | |
def run_distributed(rank, world_size, model_name): | |
setup(rank, world_size) | |
if rank == 0: | |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | |
model = load_model_on_gpus(model_name, world_size) | |
def inference(prompt, image, temperature, beam_size): | |
if rank == 0: | |
messages = [{"role": "user", "content": f'<image>\n{prompt}'}] | |
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('<image>')] | |
input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1], dtype=torch.long).unsqueeze(0).to(rank) | |
image_tensor = model.process_images([image], model.config).to(rank) | |
else: | |
input_ids = torch.zeros(1, 1, dtype=torch.long).to(rank) | |
image_tensor = torch.zeros(1, 3, 224, 224).to(rank) | |
dist.broadcast(input_ids, src=0) | |
dist.broadcast(image_tensor, src=0) | |
with torch.cuda.amp.autocast(): | |
output_ids = model.generate( | |
input_ids, | |
images=image_tensor, | |
max_new_tokens=1024, | |
temperature=temperature, | |
num_beams=beam_size, | |
use_cache=True | |
)[0] | |
if rank == 0: | |
return tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip() | |
else: | |
return "" | |
if rank == 0: | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
prompt_input = gr.Textbox(label="Prompt", placeholder="Describe this image in detail") | |
image_input = gr.Image(label="Image", type="pil") | |
temperature_input = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature") | |
beam_size_input = gr.Slider(minimum=1, maximum=10, value=4, step=1, label="Beam Size") | |
submit_button = gr.Button("Submit") | |
with gr.Column(): | |
output_text = gr.Textbox(label="Output") | |
submit_button.click( | |
fn=inference, | |
inputs=[prompt_input, image_input, temperature_input, beam_size_input], | |
outputs=output_text | |
) | |
demo.launch(share=True) | |
cleanup() | |
if __name__ == "__main__": | |
model_name = 'cognitivecomputations/dolphin-vision-72b' | |
world_size = torch.cuda.device_count() | |
print(f"Running on {world_size} GPUs") | |
torch.multiprocessing.spawn(run_distributed, args=(world_size, model_name), nprocs=world_size, join=True) |