import os import gradio as gr import torch import torch.distributed as dist import transformers from transformers import AutoModelForCausalLM, AutoTokenizer from PIL import Image import warnings # disable some warnings transformers.logging.set_verbosity_error() transformers.logging.disable_progress_bar() warnings.filterwarnings('ignore') def setup(rank, world_size): os.environ['MASTER_ADDR'] = 'localhost' os.environ['MASTER_PORT'] = '12355' dist.init_process_group("nccl", rank=rank, world_size=world_size) def cleanup(): dist.destroy_process_group() def load_model_on_gpus(model_name, num_gpus): # Calculate number of layers to assign to each GPU model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, trust_remote_code=True) num_layers = len(model.model.layers) layers_per_gpu = num_layers // num_gpus # Assign layers to GPUs device_map = {} for i in range(num_layers): device_map[f'model.layers.{i}'] = i // layers_per_gpu # Assign other components device_map['model.embed_tokens'] = 0 device_map['model.norm'] = num_gpus - 1 device_map['lm_head'] = num_gpus - 1 return AutoModelForCausalLM.from_pretrained( model_name, device_map=device_map, torch_dtype=torch.float16, trust_remote_code=True ) def run_distributed(rank, world_size, model_name): setup(rank, world_size) if rank == 0: tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) model = load_model_on_gpus(model_name, world_size) def inference(prompt, image, temperature, beam_size): if rank == 0: messages = [{"role": "user", "content": f'\n{prompt}'}] text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('')] input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1], dtype=torch.long).unsqueeze(0).to(rank) image_tensor = model.process_images([image], model.config).to(rank) else: input_ids = torch.zeros(1, 1, dtype=torch.long).to(rank) image_tensor = torch.zeros(1, 3, 224, 224).to(rank) dist.broadcast(input_ids, src=0) dist.broadcast(image_tensor, src=0) with torch.cuda.amp.autocast(): output_ids = model.generate( input_ids, images=image_tensor, max_new_tokens=1024, temperature=temperature, num_beams=beam_size, use_cache=True )[0] if rank == 0: return tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip() else: return "" if rank == 0: with gr.Blocks() as demo: with gr.Row(): with gr.Column(): prompt_input = gr.Textbox(label="Prompt", placeholder="Describe this image in detail") image_input = gr.Image(label="Image", type="pil") temperature_input = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature") beam_size_input = gr.Slider(minimum=1, maximum=10, value=4, step=1, label="Beam Size") submit_button = gr.Button("Submit") with gr.Column(): output_text = gr.Textbox(label="Output") submit_button.click( fn=inference, inputs=[prompt_input, image_input, temperature_input, beam_size_input], outputs=output_text ) demo.launch(share=True) cleanup() if __name__ == "__main__": model_name = 'cognitivecomputations/dolphin-vision-72b' world_size = torch.cuda.device_count() print(f"Running on {world_size} GPUs") torch.multiprocessing.spawn(run_distributed, args=(world_size, model_name), nprocs=world_size, join=True)