File size: 2,913 Bytes
cb14db8 5c56c76 c6d9d48 5c56c76 02ce220 cb14db8 02ce220 5c56c76 a6fc7d1 5c56c76 a6fc7d1 5c56c76 a6fc7d1 5c56c76 a6fc7d1 9add349 c6d9d48 9add349 a6fc7d1 83f4c65 5c56c76 a6fc7d1 5c56c76 c6d9d48 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
import gradio as gr
from huggingface_hub import hf_hub_download
from PIL import Image
import torch
import pytesseract
from transformers import AutoImageProcessor, AutoModelForObjectDetection
import os
os.system('chmod 777 /tmp')
os.system('apt-get update -y')
os.system('apt-get install tesseract-ocr -y')
os.system('pip install -q pytesseract')
# Load the processor and model for table structure recognition
processor = AutoImageProcessor.from_pretrained("microsoft/table-transformer-structure-recognition")
model = AutoModelForObjectDetection.from_pretrained("microsoft/table-transformer-structure-recognition")
# Check if GPU is available and use it; otherwise, use CPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# Define the inference and OCR function
def predict(image):
# Preprocess the input image
inputs = processor(images=image, return_tensors="pt").to(device)
# Perform object detection using the model
with torch.no_grad():
outputs = model(**inputs)
# Extract bounding boxes and filter for columns
predicted_boxes = outputs.pred_boxes[0].cpu().numpy() # First image
predicted_classes = outputs.logits.argmax(-1).cpu().numpy() # Class predictions
# Prepare OCR results
ocr_results = []
image_width, image_height = image.size # Get original image dimensions
# Iterate over detected boxes and perform OCR on columns
for box in predicted_boxes:
# Unpack the normalized bounding box (x_min, y_min, x_max, y_max)
x_min, y_min, x_max, y_max = box
# Ensure the coordinates are valid (x_max > x_min, y_max > y_min)
if x_min >= x_max or y_min >= y_max:
continue
# Convert normalized coordinates to pixel values
left = max(int(x_min * image_width), 0)
top = max(int(y_min * image_height), 0)
right = min(int(x_max * image_width), image_width)
bottom = min(int(y_max * image_height), image_height)
# Double-check that the coordinates are valid after conversion
if right <= left or bottom <= top:
continue
# Crop the image to the bounding box area
cropped_image = image.crop((left, top, right, bottom))
# Perform OCR on the cropped image
ocr_text = pytesseract.image_to_string(cropped_image)
# Append OCR result for this box
ocr_results.append({
"box": [left, top, right, bottom],
"text": ocr_text
})
# Return OCR results
return {"ocr_results": ocr_results}
#relaunch
# Set up the Gradio interface
interface = gr.Interface(
fn=predict, # The function that gets called when an image is uploaded
inputs=gr.Image(type="pil"), # Image input (as PIL image)
outputs="json", # Outputting a JSON with the OCR results
)
# Launch the Gradio app
interface.launch()
#recheck gradio bugging |