Keemoz0 commited on
Commit
5c56c76
·
1 Parent(s): cb14db8

FirstInterfacePush

Browse files
Files changed (2) hide show
  1. app.py +33 -1
  2. mine2.jpeg +0 -0
app.py CHANGED
@@ -1,3 +1,35 @@
1
  import gradio as gr
 
 
 
 
2
 
3
- gr.load("models/microsoft/table-transformer-structure-recognition").launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ from huggingface_hub import hf_hub_download
3
+ from PIL import Image
4
+ import torch
5
+ from transformers import AutoImageProcessor, AutoModelForObjectDetection
6
 
7
+ # Load the processor and model for table structure recognition
8
+ processor = AutoImageProcessor.from_pretrained("microsoft/table-transformer-structure-recognition")
9
+ model = AutoModelForObjectDetection.from_pretrained("microsoft/table-transformer-structure-recognition")
10
+
11
+ # Define the inference function
12
+ def predict(image):
13
+ # Preprocess the input image
14
+ inputs = processor(images=image, return_tensors="pt")
15
+
16
+ # Perform object detection using the model
17
+ with torch.no_grad():
18
+ outputs = model(**inputs)
19
+
20
+ # Extract bounding boxes and class labels
21
+ predicted_boxes = outputs.pred_boxes[0].cpu().numpy() # First image
22
+ predicted_classes = outputs.logits.argmax(-1).cpu().numpy() # Class predictions
23
+
24
+ # Return the bounding boxes for display
25
+ return {"boxes": predicted_boxes.tolist(), "classes": predicted_classes.tolist()}
26
+
27
+ # Set up the Gradio interface
28
+ interface = gr.Interface(
29
+ fn=predict, # The function that gets called when an image is uploaded
30
+ inputs=gr.Image(type="pil"), # Image input (as PIL image)
31
+ outputs="json", # Outputting a JSON with the boxes and classes
32
+ )
33
+
34
+ # Launch the Gradio app
35
+ interface.launch()
mine2.jpeg ADDED