File size: 11,487 Bytes
f9b5f4c 9a563a7 f9b5f4c d5ddb65 f9b5f4c 44d34ec f9b5f4c 184cb45 f9b5f4c bf8bd09 f9b5f4c c95030a f9b5f4c c95030a f9b5f4c ad54dd4 bc40b6c aab82ab dac6b4f ad54dd4 f9b5f4c ad54dd4 f9b5f4c ad54dd4 f9b5f4c ad54dd4 f9b5f4c ad54dd4 f9b5f4c ad54dd4 9ef6111 f9b5f4c ad54dd4 c95030a bf8bd09 c95030a bf8bd09 c95030a f9b5f4c c95030a f9b5f4c ad54dd4 f9b5f4c 15be605 f9b5f4c 9bc671f ad54dd4 bf8bd09 f9b5f4c c95030a 4bb36cd 903570a bf8bd09 903570a f9b5f4c bf8bd09 c95030a f9b5f4c 4bb36cd f9b5f4c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
import torch
# For data transformation
from torchvision import transforms
# For ML Model
import transformers
from transformers import VivitImageProcessor, VivitConfig, VivitModel
from transformers import set_seed
# For Data Loaders
import datasets
from torch.utils.data import Dataset, DataLoader
# For GPU
from accelerate import Accelerator, notebook_launcher
# Use PyTorch bridge for Decord
import decord
from decord.bridge import set_bridge
decord.bridge.set_bridge("torch")
from decord import VideoReader
# General Libraries
import os
import PIL
import gc
import pandas as pd
import numpy as np
from torch.nn import Linear, Softmax
import gradio as gr
import cv2
# Mediapipe Library
import mediapipe as mp
from mediapipe.tasks import python
from mediapipe.tasks.python import vision
from mediapipe import solutions
from mediapipe.framework.formats import landmark_pb2
# Constants
CLIP_LENGTH = 32
FRAME_STEPS = 4
CLIP_SIZE = 224
BATCH_SIZE = 1
SEED = 42
# Set the device (GPU or CPU)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# pretrained Model
MODEL_TRANSFORMER = 'google/vivit-b-16x2'
# Set Paths
model_path = 'vivit_pytorch_loss051.pt'
data_path = 'signs'
# Create Mediapipe Objects
mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles
mp_hands = mp.solutions.hands
mp_face = mp.solutions.face_mesh
mp_pose = mp.solutions.pose
mp_holistic = mp.solutions.holistic
hand_model_path = 'hand_landmarker.task'
pose_model_path = 'pose_landmarker.task'
BaseOptions = mp.tasks.BaseOptions
HandLandmarker = mp.tasks.vision.HandLandmarker
HandLandmarkerOptions = mp.tasks.vision.HandLandmarkerOptions
PoseLandmarker = mp.tasks.vision.PoseLandmarker
PoseLandmarkerOptions = mp.tasks.vision.PoseLandmarkerOptions
VisionRunningMode = mp.tasks.vision.RunningMode
# Create a hand landmarker instance with the video mode:
options_hand = HandLandmarkerOptions(
base_options=BaseOptions(model_asset_path = hand_model_path),
running_mode=VisionRunningMode.VIDEO)
# Create a pose landmarker instance with the video mode:
options_pose = PoseLandmarkerOptions(
base_options=BaseOptions(model_asset_path=pose_model_path),
running_mode=VisionRunningMode.VIDEO)
detector_hand = vision.HandLandmarker.create_from_options(options_hand)
detector_pose = vision.PoseLandmarker.create_from_options(options_pose)
holistic = mp_holistic.Holistic(
static_image_mode=False,
model_complexity=1,
smooth_landmarks=True,
enable_segmentation=False,
refine_face_landmarks=True,
min_detection_confidence=0.5,
min_tracking_confidence=0.5
)
# Creating Dataset
class CreateDatasetProd():
def __init__(self
, clip_len
, clip_size
, frame_step
):
super().__init__()
self.clip_len = clip_len
self.clip_size = clip_size
self.frame_step = frame_step
# Define a sample transformation pipeline
self.transform_prod = transforms.v2.Compose([
transforms.v2.ToImage(),
transforms.v2.Resize((self.clip_size, self.clip_size)),
transforms.v2.ToDtype(torch.float32, scale=True)
])
def read_video(self, video_path):
# Read the video and convert to frames
vr = VideoReader(video_path)
total_frames = len(vr)
# Determine frame indices based on total frames
if total_frames < self.clip_len:
key_indices = list(range(total_frames))
for _ in range(self.clip_len - len(key_indices)):
key_indices.append(key_indices[-1])
else:
key_indices = list(range(0, total_frames, max(1, total_frames // self.clip_len)))[:self.clip_len]
#load frames
frames = vr.get_batch(key_indices)
del vr
# Force garbage collection
gc.collect()
return frames
def add_landmarks(self, video):
annotated_image = []
for frame in video:
#Convert pytorch Tensor to CV2 image
image = frame.permute(1, 2, 0).numpy() # Convert to (H, W, C) format for mediapipe to work
results = holistic.process(image)
mp_drawing.draw_landmarks(
image,
results.left_hand_landmarks,
mp_hands.HAND_CONNECTIONS,
landmark_drawing_spec = mp_drawing_styles.get_default_hand_landmarks_style(),
connection_drawing_spec = mp_drawing_styles.get_default_hand_connections_style()
)
mp_drawing.draw_landmarks(
image,
results.right_hand_landmarks,
mp_hands.HAND_CONNECTIONS,
landmark_drawing_spec = mp_drawing_styles.get_default_hand_landmarks_style(),
connection_drawing_spec = mp_drawing_styles.get_default_hand_connections_style()
)
mp_drawing.draw_landmarks(
image,
results.pose_landmarks,
mp_holistic.POSE_CONNECTIONS,
landmark_drawing_spec = mp_drawing_styles.get_default_pose_landmarks_style(),
#connection_drawing_spec = None
)
annotated_image.append(torch.from_numpy(image))
del image, results
# Force garbage collection
gc.collect()
return torch.stack(annotated_image)
def create_dataset(self, video_paths):
# Read and process Videos
video = self.read_video(video_paths)
video = torch.from_numpy(video.asnumpy())
video = transforms.v2.functional.resize(video.permute(0, 3, 1, 2), size=(self.clip_size*2, self.clip_size*3)) # Auto converts to (F, C, H, W) format
video = self.add_landmarks(video)
# Data Preperation for ML Model without Augmentation
video = self.transform_prod(video.permute(0, 3, 1, 2))
pixel_values = video.to(device)
# Force garbage collection
del video
gc.collect()
return pixel_values #CustomDatasetProd(pixel_values=pixel_values)
# Creating Dataloader object
dataset_prod_obj = CreateDatasetProd(CLIP_LENGTH, CLIP_SIZE, FRAME_STEPS)
# Creating ML Model
class SignClassificationModel(torch.nn.Module):
def __init__(self, model_name, idx_to_label, label_to_idx, classes_len):
super(SignClassificationModel, self).__init__()
self.config = VivitConfig.from_pretrained(model_name, id2label=idx_to_label,
label2id=label_to_idx, hidden_dropout_prob=hyperparameters['dropout_rate'],
attention_probs_dropout_prob=hyperparameters['dropout_rate'],
return_dict=True)
self.backbone = VivitModel.from_pretrained(model_name, config=self.config) # Load ViT model
self.ff_head = Linear(self.backbone.config.hidden_size, classes_len)
def forward(self, images):
x = self.backbone(images).last_hidden_state # Extract embeddings
self.backbone.gradient_checkpointing_enable()
# Reduce along emb_dimension1 (axis 1)
reduced_tensor = x.mean(dim=1)
reduced_tensor = self.ff_head(reduced_tensor)
return reduced_tensor
# Load the model
model_pretrained = torch.load(model_path, map_location=device, weights_only=False) #torch.device('cpu')
# Evaluation Function
def prod_function(model_pretrained, prod_ds):
# Initialize accelerator
accelerator = Accelerator()
if accelerator.is_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# The seed need to be set before we instantiate the model, as it will determine the random head.
set_seed(SEED)
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the prepare method.
accelerated_model, acclerated_prod_ds = accelerator.prepare(model_pretrained, prod_ds)
# Evaluate at the end of the epoch
accelerated_model.eval()
with torch.no_grad():
outputs = accelerated_model(acclerated_prod_ds.unsqueeze(0))
prod_logits = outputs.squeeze(1)
prod_pred = prod_logits.argmax(-1)
return prod_pred
# Function to get landmarked video
def tensor_to_video(video_tensor, fps=30):
video_numpy = video_tensor.permute(0, 2, 3, 1).cpu().numpy()
# Normalize values to [0, 255] if necessary
if video_numpy.max() <= 1.0:
video_numpy = (video_numpy * 255).astype(np.uint8)
return video_numpy
# Function to list available videos dynamically
def list_videos():
if os.path.exists(data_path):
video_lst = [f for f in os.listdir(data_path) if f.endswith((".mp4", ".mov", ".MOV", ".webm", ".avi"))]
return video_lst
# Function to return the selected video path
def play_video(selected_video):
return os.path.join(data_path, selected_video) if selected_video else None
## Function to refresh dropdown options
#def refresh_dropdown():
# return gr.Dropdown.update(choices=list_videos())
# Main Function for tab - Gesture recognition
def translate_sign_language(gesture):
# Create Dataset
prod_ds = dataset_prod_obj.create_dataset(gesture)
#prod_video = tensor_to_video(prod_ds)
prod_video = np.random.randint(0, 255, (32, 225, 225, 3), dtype=np.uint8)
# Run ML Model
predicted_prod_label = prod_function(model_pretrained, prod_ds)
# Identify the hand gesture
predicted_prod_label = predicted_prod_label.squeeze(0)
idx_to_label = model_pretrained.config.id2label
gesture_translation = idx_to_label[predicted_prod_label.cpu().numpy().item()] # Convert to a scalar
return gesture_translation , prod_video
with gr.Blocks() as demo:
gr.Markdown("# Indian Sign Language Translation App")
# Gesture recognition Tab
with gr.Tab("Gesture recognition"):
with gr.Row():
with gr.Column(scale=2, min_width=300):
# Add webcam input for sign language video capture
video_input = gr.Video(format="mp4", label="Gesture")
# Submit the Video
video_button = gr.Button("Submit")
# Display the landmarked video
video_output = gr.Video(streaming=True, label="Landmarked Gesture")
with gr.Row():
# Add a button or functionality to process the video
test_output = gr.Textbox(label="Translation in English")
# Set up the interface
video_button.click(translate_sign_language, inputs=video_input, outputs=[test_output, video_output])
# Indian Sign Language gesture reference tab
with gr.Tab("Indian Sign Language gesture reference"):
with gr.Row():
video_dropdown = gr.Dropdown(choices=list_videos(), label="ISL gestures", info="More gestures comming soon!")
search_button = gr.Button("Search Gesture")
search_output = gr.Video(streaming=True, label="ISL gestures Video")
# Set up the interface
search_button.click(play_video, inputs=video_dropdown, outputs=search_output)
if __name__ == "__main__":
demo.launch()
|