Commit
·
f9b5f4c
1
Parent(s):
3f76f2c
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,276 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
# For data transformation
|
| 3 |
+
from torchvision import transforms
|
| 4 |
+
# For ML Model
|
| 5 |
+
from transformers import VivitImageProcessor, VivitConfig, VivitModel
|
| 6 |
+
# For Data Loaders
|
| 7 |
+
from torch.utils.data import Dataset, DataLoader
|
| 8 |
+
# For GPU
|
| 9 |
+
from accelerate import Accelerator, notebook_launcher
|
| 10 |
+
# General Libraries
|
| 11 |
+
import os
|
| 12 |
+
import PIL
|
| 13 |
+
import gc
|
| 14 |
+
import pandas as pd
|
| 15 |
+
import numpy as np
|
| 16 |
+
from torch.nn import Linear, Softmax
|
| 17 |
+
import gradio as gr
|
| 18 |
+
# Mediapipe Library
|
| 19 |
+
import mediapipe as mp
|
| 20 |
+
from mediapipe.tasks import python
|
| 21 |
+
from mediapipe.tasks.python import vision
|
| 22 |
+
from mediapipe import solutions
|
| 23 |
+
from mediapipe.framework.formats import landmark_pb2
|
| 24 |
+
# Constants
|
| 25 |
+
CLIP_LENGTH = 32
|
| 26 |
+
FRAME_STEPS = 4
|
| 27 |
+
CLIP_SIZE = 224
|
| 28 |
+
BATCH_SIZE = 1
|
| 29 |
+
SEED = 42
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
# Set the device (GPU or CPU)
|
| 33 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 34 |
+
# pretrained Model
|
| 35 |
+
MODEL_TRANSFORMER = 'google/vivit-b-16x2'
|
| 36 |
+
# Set Paths
|
| 37 |
+
model_path = 'vivit_pytorch_loss051.pt'
|
| 38 |
+
|
| 39 |
+
# Create Mediapipe Objects
|
| 40 |
+
mp_drawing = mp.solutions.drawing_utils
|
| 41 |
+
mp_drawing_styles = mp.solutions.drawing_styles
|
| 42 |
+
mp_hands = mp.solutions.hands
|
| 43 |
+
mp_face = mp.solutions.face_mesh
|
| 44 |
+
mp_pose = mp.solutions.pose
|
| 45 |
+
mp_holistic = mp.solutions.holistic
|
| 46 |
+
hand_model_path = 'hand_landmarker.task'
|
| 47 |
+
pose_model_path = 'pose_landmarker.task'
|
| 48 |
+
|
| 49 |
+
BaseOptions = mp.tasks.BaseOptions
|
| 50 |
+
HandLandmarker = mp.tasks.vision.HandLandmarker
|
| 51 |
+
HandLandmarkerOptions = mp.tasks.vision.HandLandmarkerOptions
|
| 52 |
+
PoseLandmarker = mp.tasks.vision.PoseLandmarker
|
| 53 |
+
PoseLandmarkerOptions = mp.tasks.vision.PoseLandmarkerOptions
|
| 54 |
+
VisionRunningMode = mp.tasks.vision.RunningMode
|
| 55 |
+
|
| 56 |
+
# Create a hand landmarker instance with the video mode:
|
| 57 |
+
options_hand = HandLandmarkerOptions(
|
| 58 |
+
base_options=BaseOptions(model_asset_path = hand_model_path),
|
| 59 |
+
running_mode=VisionRunningMode.VIDEO)
|
| 60 |
+
|
| 61 |
+
# Create a pose landmarker instance with the video mode:
|
| 62 |
+
options_pose = PoseLandmarkerOptions(
|
| 63 |
+
base_options=BaseOptions(model_asset_path=pose_model_path),
|
| 64 |
+
running_mode=VisionRunningMode.VIDEO)
|
| 65 |
+
|
| 66 |
+
detector_hand = vision.HandLandmarker.create_from_options(options_hand)
|
| 67 |
+
detector_pose = vision.PoseLandmarker.create_from_options(options_pose)
|
| 68 |
+
|
| 69 |
+
holistic = mp_holistic.Holistic(
|
| 70 |
+
static_image_mode=False,
|
| 71 |
+
model_complexity=1,
|
| 72 |
+
smooth_landmarks=True,
|
| 73 |
+
enable_segmentation=False,
|
| 74 |
+
refine_face_landmarks=True,
|
| 75 |
+
min_detection_confidence=0.5,
|
| 76 |
+
min_tracking_confidence=0.5
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
# Creating Dataloader
|
| 80 |
+
class CustomDatasetProd(Dataset):
|
| 81 |
+
def __init__(self, pixel_values):
|
| 82 |
+
self.pixel_values = pixel_values.to('cpu')
|
| 83 |
+
|
| 84 |
+
def __len__(self):
|
| 85 |
+
return len(self.pixel_values)
|
| 86 |
+
|
| 87 |
+
def __getitem__(self, idx):
|
| 88 |
+
item = {
|
| 89 |
+
'pixel_values': self.pixel_values[idx]
|
| 90 |
+
}
|
| 91 |
+
return item
|
| 92 |
+
|
| 93 |
+
class CreateDatasetProd():
|
| 94 |
+
def __init__(self
|
| 95 |
+
, clip_len
|
| 96 |
+
, clip_size
|
| 97 |
+
, frame_step
|
| 98 |
+
):
|
| 99 |
+
super().__init__()
|
| 100 |
+
self.clip_len = clip_len
|
| 101 |
+
self.clip_size = clip_size
|
| 102 |
+
self.frame_step = frame_step
|
| 103 |
+
|
| 104 |
+
# Define a sample transformation pipeline
|
| 105 |
+
self.transform_prod = transforms.v2.Compose([
|
| 106 |
+
transforms.v2.ToImage(),
|
| 107 |
+
transforms.v2.Resize((self.clip_size, self.clip_size)),
|
| 108 |
+
transforms.v2.ToDtype(torch.float32, scale=True)
|
| 109 |
+
])
|
| 110 |
+
|
| 111 |
+
def read_video(self, video_path):
|
| 112 |
+
# Read the video and convert to frames
|
| 113 |
+
vr = VideoReader(video_path)
|
| 114 |
+
total_frames = len(vr)
|
| 115 |
+
|
| 116 |
+
# Determine frame indices based on total frames
|
| 117 |
+
if total_frames < self.clip_len:
|
| 118 |
+
key_indices = list(range(total_frames))
|
| 119 |
+
for _ in range(self.clip_len - len(key_indices)):
|
| 120 |
+
key_indices.append(key_indices[-1])
|
| 121 |
+
else:
|
| 122 |
+
key_indices = list(range(0, total_frames, max(1, total_frames // self.clip_len)))[:self.clip_len]
|
| 123 |
+
|
| 124 |
+
#load frames
|
| 125 |
+
frames = vr.get_batch(key_indices)
|
| 126 |
+
del vr
|
| 127 |
+
# Force garbage collection
|
| 128 |
+
gc.collect()
|
| 129 |
+
|
| 130 |
+
return frames
|
| 131 |
+
|
| 132 |
+
def add_landmarks(self, video):
|
| 133 |
+
annotated_image = []
|
| 134 |
+
for frame in video:
|
| 135 |
+
|
| 136 |
+
#Convert pytorch Tensor to CV2 image
|
| 137 |
+
image = frame.permute(1, 2, 0).numpy() # Convert to (H, W, C) format for mediapipe to work
|
| 138 |
+
|
| 139 |
+
results = holistic.process(image)
|
| 140 |
+
|
| 141 |
+
mp_drawing.draw_landmarks(
|
| 142 |
+
image,
|
| 143 |
+
results.left_hand_landmarks,
|
| 144 |
+
mp_hands.HAND_CONNECTIONS,
|
| 145 |
+
landmark_drawing_spec = mp_drawing_styles.get_default_hand_landmarks_style(),
|
| 146 |
+
connection_drawing_spec = mp_drawing_styles.get_default_hand_connections_style()
|
| 147 |
+
)
|
| 148 |
+
mp_drawing.draw_landmarks(
|
| 149 |
+
image,
|
| 150 |
+
results.right_hand_landmarks,
|
| 151 |
+
mp_hands.HAND_CONNECTIONS,
|
| 152 |
+
landmark_drawing_spec = mp_drawing_styles.get_default_hand_landmarks_style(),
|
| 153 |
+
connection_drawing_spec = mp_drawing_styles.get_default_hand_connections_style()
|
| 154 |
+
)
|
| 155 |
+
mp_drawing.draw_landmarks(
|
| 156 |
+
image,
|
| 157 |
+
results.pose_landmarks,
|
| 158 |
+
mp_holistic.POSE_CONNECTIONS,
|
| 159 |
+
landmark_drawing_spec = mp_drawing_styles.get_default_pose_landmarks_style(),
|
| 160 |
+
#connection_drawing_spec = None
|
| 161 |
+
)
|
| 162 |
+
|
| 163 |
+
annotated_image.append(torch.from_numpy(image))
|
| 164 |
+
|
| 165 |
+
del image, results
|
| 166 |
+
# Force garbage collection
|
| 167 |
+
gc.collect()
|
| 168 |
+
|
| 169 |
+
return torch.stack(annotated_image)
|
| 170 |
+
|
| 171 |
+
def create_dataset(self, video_paths):
|
| 172 |
+
pixel_values = []
|
| 173 |
+
for path in tqdm(video_paths):
|
| 174 |
+
#print('Video', path)
|
| 175 |
+
# Read and process Videos
|
| 176 |
+
video = self.read_video(path)
|
| 177 |
+
video = transforms.v2.functional.resize(video.permute(0, 3, 1, 2), size=(self.clip_size*2, self.clip_size*3)) # Auto converts to (F, C, H, W) format
|
| 178 |
+
video = self.add_landmarks(video)
|
| 179 |
+
# Data Preperation for ML Model without Augmentation
|
| 180 |
+
video = self.transform_prod(video.permute(0, 3, 1, 2))
|
| 181 |
+
pixel_values.append(video.to(device))
|
| 182 |
+
del video
|
| 183 |
+
# Force garbage collection
|
| 184 |
+
gc.collect()
|
| 185 |
+
|
| 186 |
+
pixel_values = torch.stack(pixel_values).to(device)
|
| 187 |
+
return CustomDatasetProd(pixel_values=pixel_values)
|
| 188 |
+
|
| 189 |
+
# Creating Dataloader object
|
| 190 |
+
dataset_prod_obj = CreateDatasetProd(CLIP_LENGTH, CLIP_SIZE, FRAME_STEPS)
|
| 191 |
+
|
| 192 |
+
# Creating ML Model
|
| 193 |
+
class SignClassificationModel(torch.nn.Module):
|
| 194 |
+
def __init__(self, model_name, idx_to_label, label_to_idx, classes_len):
|
| 195 |
+
super(SignClassificationModel, self).__init__()
|
| 196 |
+
self.config = VivitConfig.from_pretrained(model_name, id2label=idx_to_label,
|
| 197 |
+
label2id=label_to_idx, hidden_dropout_prob=hyperparameters['dropout_rate'],
|
| 198 |
+
attention_probs_dropout_prob=hyperparameters['dropout_rate'],
|
| 199 |
+
return_dict=True)
|
| 200 |
+
self.backbone = VivitModel.from_pretrained(model_name, config=self.config) # Load ViT model
|
| 201 |
+
self.ff_head = Linear(self.backbone.config.hidden_size, classes_len)
|
| 202 |
+
|
| 203 |
+
def forward(self, images):
|
| 204 |
+
x = self.backbone(images).last_hidden_state # Extract embeddings
|
| 205 |
+
self.backbone.gradient_checkpointing_enable()
|
| 206 |
+
|
| 207 |
+
# Reduce along emb_dimension1 (axis 1)
|
| 208 |
+
reduced_tensor = x.mean(dim=1)
|
| 209 |
+
reduced_tensor = self.ff_head(reduced_tensor)
|
| 210 |
+
return reduced_tensor
|
| 211 |
+
|
| 212 |
+
# Load the model
|
| 213 |
+
model_pretrained = torch.load(model_path, map_location=torch.device('cpu'), weights_only=False)
|
| 214 |
+
|
| 215 |
+
# Evaluation Function
|
| 216 |
+
def prod_function(model_pretrained, prod_dl):
|
| 217 |
+
# Initialize accelerator
|
| 218 |
+
accelerator = Accelerator()
|
| 219 |
+
|
| 220 |
+
if accelerator.is_main_process:
|
| 221 |
+
datasets.utils.logging.set_verbosity_warning()
|
| 222 |
+
transformers.utils.logging.set_verbosity_info()
|
| 223 |
+
else:
|
| 224 |
+
datasets.utils.logging.set_verbosity_error()
|
| 225 |
+
transformers.utils.logging.set_verbosity_error()
|
| 226 |
+
|
| 227 |
+
# The seed need to be set before we instantiate the model, as it will determine the random head.
|
| 228 |
+
set_seed(SEED)
|
| 229 |
+
|
| 230 |
+
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the prepare method.
|
| 231 |
+
accelerated_model, acclerated_prod_dl = accelerator.prepare(model_pretrained, prod_dl)
|
| 232 |
+
|
| 233 |
+
# Evaluate at the end of the epoch (distributed evaluation as we have 8 TPU cores)
|
| 234 |
+
accelerated_model.eval()
|
| 235 |
+
|
| 236 |
+
prod_preds = []
|
| 237 |
+
|
| 238 |
+
for batch in acclerated_prod_dl:
|
| 239 |
+
videos = batch['pixel_values']
|
| 240 |
+
with torch.no_grad():
|
| 241 |
+
outputs = accelerated_model(videos)
|
| 242 |
+
|
| 243 |
+
prod_logits = outputs.squeeze(1)
|
| 244 |
+
prod_pred = prod_logits.argmax(-1)
|
| 245 |
+
prod_preds.append(prod_pred)
|
| 246 |
+
return prod_preds
|
| 247 |
+
|
| 248 |
+
def translate_sign_language(gesture):
|
| 249 |
+
# Create Dataset
|
| 250 |
+
prod_ds = dataset_prod_obj.create_dataset(gesture)
|
| 251 |
+
prod_dl = DataLoader(prod_ds, batch_size=BATCH_SIZE)
|
| 252 |
+
|
| 253 |
+
# Run ML Model
|
| 254 |
+
predicted_prod_label = prod_function(model_pretrained, prod_dl)
|
| 255 |
+
|
| 256 |
+
# Identify the hand gesture
|
| 257 |
+
predicted_prod_label = torch.stack(predicted_prod_label)
|
| 258 |
+
predicted_prod_label = predicted_prod_label.squeeze(1)
|
| 259 |
+
|
| 260 |
+
idx_to_label = model_pretrained.config.id2label
|
| 261 |
+
for val in np.array(predicted_prod_label):
|
| 262 |
+
gesture_translation = idx_to_label[val]
|
| 263 |
+
|
| 264 |
+
return gesture_translation
|
| 265 |
+
|
| 266 |
+
with gr.Blocks() as demo:
|
| 267 |
+
gr.Markdown("# Indian Sign Language Translation App")
|
| 268 |
+
# Add webcam input for sign language video capture
|
| 269 |
+
video_input = gr.Video(source="webcam")
|
| 270 |
+
# Add a button or functionality to process the video
|
| 271 |
+
output = gr.Textbox()
|
| 272 |
+
# Set up the interface
|
| 273 |
+
video_input.change(translate_sign_language, inputs=video_input, outputs=output)
|
| 274 |
+
|
| 275 |
+
if __gesture__ == "__main__":
|
| 276 |
+
demo.launch()
|