Spaces:
Running
Running
# Copyright (c) ONNX Project Contributors | |
# | |
# SPDX-License-Identifier: Apache-2.0 | |
import numpy as np | |
import onnx | |
from onnx.backend.test.case.base import Base | |
from onnx.backend.test.case.node import expect | |
class DynamicQuantizeLinear(Base): | |
def export() -> None: | |
node = onnx.helper.make_node( | |
"DynamicQuantizeLinear", | |
inputs=["x"], | |
outputs=["y", "y_scale", "y_zero_point"], | |
) | |
# expected scale 0.0196078438 and zero point 153 | |
X = np.array([0, 2, -3, -2.5, 1.34, 0.5]).astype(np.float32) | |
x_min = np.minimum(0, np.min(X)) | |
x_max = np.maximum(0, np.max(X)) | |
Y_Scale = np.float32((x_max - x_min) / (255 - 0)) # uint8 -> [0, 255] | |
Y_ZeroPoint = np.clip(round((0 - x_min) / Y_Scale), 0, 255).astype(np.uint8) | |
Y = np.clip(np.round(X / Y_Scale) + Y_ZeroPoint, 0, 255).astype(np.uint8) | |
expect( | |
node, | |
inputs=[X], | |
outputs=[Y, Y_Scale, Y_ZeroPoint], | |
name="test_dynamicquantizelinear", | |
) | |
# expected scale 0.0156862754 and zero point 255 | |
X = np.array([-1.0, -2.1, -1.3, -2.5, -3.34, -4.0]).astype(np.float32) | |
x_min = np.minimum(0, np.min(X)) | |
x_max = np.maximum(0, np.max(X)) | |
Y_Scale = np.float32((x_max - x_min) / (255 - 0)) # uint8 -> [0, 255] | |
Y_ZeroPoint = np.clip(round((0 - x_min) / Y_Scale), 0, 255).astype(np.uint8) | |
Y = np.clip(np.round(X / Y_Scale) + Y_ZeroPoint, 0, 255).astype(np.uint8) | |
expect( | |
node, | |
inputs=[X], | |
outputs=[Y, Y_Scale, Y_ZeroPoint], | |
name="test_dynamicquantizelinear_max_adjusted", | |
) | |
X = ( | |
np.array([1, 2.1, 1.3, 2.5, 3.34, 4.0, 1.5, 2.6, 3.9, 4.0, 3.0, 2.345]) | |
.astype(np.float32) | |
.reshape((3, 4)) | |
) | |
# expected scale 0.0156862754 and zero point 0 | |
x_min = np.minimum(0, np.min(X)) | |
x_max = np.maximum(0, np.max(X)) | |
Y_Scale = np.float32((x_max - x_min) / (255 - 0)) # uint8 -> [0, 255] | |
Y_ZeroPoint = np.clip(round((0 - x_min) / Y_Scale), 0, 255).astype(np.uint8) | |
Y = np.clip(np.round(X / Y_Scale) + Y_ZeroPoint, 0, 255).astype(np.uint8) | |
expect( | |
node, | |
inputs=[X], | |
outputs=[Y, Y_Scale, Y_ZeroPoint], | |
name="test_dynamicquantizelinear_min_adjusted", | |
) | |