# Copyright (c) ONNX Project Contributors # # SPDX-License-Identifier: Apache-2.0 import numpy as np import onnx from onnx.backend.test.case.base import Base from onnx.backend.test.case.node import expect class DynamicQuantizeLinear(Base): @staticmethod def export() -> None: node = onnx.helper.make_node( "DynamicQuantizeLinear", inputs=["x"], outputs=["y", "y_scale", "y_zero_point"], ) # expected scale 0.0196078438 and zero point 153 X = np.array([0, 2, -3, -2.5, 1.34, 0.5]).astype(np.float32) x_min = np.minimum(0, np.min(X)) x_max = np.maximum(0, np.max(X)) Y_Scale = np.float32((x_max - x_min) / (255 - 0)) # uint8 -> [0, 255] Y_ZeroPoint = np.clip(round((0 - x_min) / Y_Scale), 0, 255).astype(np.uint8) Y = np.clip(np.round(X / Y_Scale) + Y_ZeroPoint, 0, 255).astype(np.uint8) expect( node, inputs=[X], outputs=[Y, Y_Scale, Y_ZeroPoint], name="test_dynamicquantizelinear", ) # expected scale 0.0156862754 and zero point 255 X = np.array([-1.0, -2.1, -1.3, -2.5, -3.34, -4.0]).astype(np.float32) x_min = np.minimum(0, np.min(X)) x_max = np.maximum(0, np.max(X)) Y_Scale = np.float32((x_max - x_min) / (255 - 0)) # uint8 -> [0, 255] Y_ZeroPoint = np.clip(round((0 - x_min) / Y_Scale), 0, 255).astype(np.uint8) Y = np.clip(np.round(X / Y_Scale) + Y_ZeroPoint, 0, 255).astype(np.uint8) expect( node, inputs=[X], outputs=[Y, Y_Scale, Y_ZeroPoint], name="test_dynamicquantizelinear_max_adjusted", ) X = ( np.array([1, 2.1, 1.3, 2.5, 3.34, 4.0, 1.5, 2.6, 3.9, 4.0, 3.0, 2.345]) .astype(np.float32) .reshape((3, 4)) ) # expected scale 0.0156862754 and zero point 0 x_min = np.minimum(0, np.min(X)) x_max = np.maximum(0, np.max(X)) Y_Scale = np.float32((x_max - x_min) / (255 - 0)) # uint8 -> [0, 255] Y_ZeroPoint = np.clip(round((0 - x_min) / Y_Scale), 0, 255).astype(np.uint8) Y = np.clip(np.round(X / Y_Scale) + Y_ZeroPoint, 0, 255).astype(np.uint8) expect( node, inputs=[X], outputs=[Y, Y_Scale, Y_ZeroPoint], name="test_dynamicquantizelinear_min_adjusted", )