Kano001's picture
Upload 2707 files
dc2106c verified
raw
history blame
9.96 kB
# Copyright (c) ONNX Project Contributors
#
# SPDX-License-Identifier: Apache-2.0
import sys
import numpy as np
import onnx
from onnx import TensorProto, helper
from onnx.backend.test.case.base import Base
from onnx.backend.test.case.node import expect
from onnx.helper import float32_to_float8e4m3, float32_to_float8e5m2, make_tensor
from onnx.numpy_helper import float8e4m3_to_float32, float8e5m2_to_float32
class CastLike(Base):
@staticmethod
def export() -> None:
shape = (3, 4)
test_cases = [
("FLOAT", "FLOAT16"),
("FLOAT", "DOUBLE"),
("FLOAT16", "FLOAT"),
("FLOAT16", "DOUBLE"),
("DOUBLE", "FLOAT"),
("DOUBLE", "FLOAT16"),
("FLOAT", "STRING"),
("STRING", "FLOAT"),
("FLOAT", "BFLOAT16"),
("BFLOAT16", "FLOAT"),
("FLOAT", "FLOAT8E4M3FN"),
("FLOAT", "FLOAT8E4M3FNUZ"),
("FLOAT8E4M3FN", "FLOAT"),
("FLOAT8E4M3FNUZ", "FLOAT"),
("FLOAT", "FLOAT8E5M2"),
("FLOAT", "FLOAT8E5M2FNUZ"),
("FLOAT8E5M2", "FLOAT"),
("FLOAT8E5M2FNUZ", "FLOAT"),
]
vect_float32_to_float8e4m3 = np.vectorize(float32_to_float8e4m3)
vect_float32_to_float8e5m2 = np.vectorize(float32_to_float8e5m2)
for from_type, to_type in test_cases:
input_type_proto = None
output_type_proto = None
if from_type == "BFLOAT16" or to_type == "BFLOAT16":
np_fp32 = np.array(
[
"0.47892547",
"0.48033667",
"0.49968487",
"0.81910545",
"0.47031248",
"0.816468",
"0.21087195",
"0.7229038",
"NaN",
"INF",
"+INF",
"-INF",
],
dtype=np.float32,
)
little_endisan = sys.byteorder == "little"
np_uint16_view = np_fp32.view(dtype=np.uint16)
np_bfp16 = (
np_uint16_view[1::2] if little_endisan else np_uint16_view[0::2]
)
if to_type == "BFLOAT16":
assert from_type == "FLOAT"
input = np_fp32.reshape([3, 4])
output = np_bfp16.reshape([3, 4])
input_type_proto = onnx.helper.make_tensor_type_proto(
int(TensorProto.FLOAT), input.shape
)
output_type_proto = onnx.helper.make_tensor_type_proto(
int(TensorProto.BFLOAT16), output.shape
)
else:
assert to_type == "FLOAT"
input = np_bfp16.reshape([3, 4])
# convert bfloat to FLOAT
np_fp32_zeros = np.zeros((len(np_bfp16) * 2,), dtype=np.uint16)
if little_endisan:
np_fp32_zeros[1::2] = np_bfp16
else:
np_fp32_zeros[0::2] = np_bfp16
np_fp32_from_bfloat = np_fp32_zeros.view(dtype=np.float32)
output = np_fp32_from_bfloat.reshape([3, 4])
input_type_proto = onnx.helper.make_tensor_type_proto(
int(TensorProto.BFLOAT16), input.shape
)
output_type_proto = onnx.helper.make_tensor_type_proto(
int(TensorProto.FLOAT), output.shape
)
like = output.flatten()[0:1]
elif from_type in (
"FLOAT8E4M3FN",
"FLOAT8E4M3FNUZ",
"FLOAT8E5M2",
"FLOAT8E5M2FNUZ",
) or to_type in (
"FLOAT8E4M3FN",
"FLOAT8E4M3FNUZ",
"FLOAT8E5M2",
"FLOAT8E5M2FNUZ",
):
np_fp32 = np.array(
[
"0.47892547",
"0.48033667",
"0.49968487",
"0.81910545",
"0.47031248",
"0.816468",
"0.21087195",
"0.7229038",
"NaN",
"INF",
"+INF",
"-INF",
],
dtype=np.float32,
)
if to_type == "FLOAT8E4M3FN":
expected = float8e4m3_to_float32(
vect_float32_to_float8e4m3(np_fp32)
)
expected_tensor = make_tensor(
"x", TensorProto.FLOAT8E4M3FN, [3, 4], expected.tolist()
)
like_tensor = make_tensor(
"x", TensorProto.FLOAT8E4M3FN, [1], expected[:1]
)
elif to_type == "FLOAT8E4M3FNUZ":
expected = float8e4m3_to_float32(
vect_float32_to_float8e4m3(np_fp32, uz=True), uz=True
)
expected_tensor = make_tensor(
"x", TensorProto.FLOAT8E4M3FNUZ, [3, 4], expected.tolist()
)
like_tensor = make_tensor(
"x", TensorProto.FLOAT8E4M3FNUZ, [1], expected[:1]
)
elif to_type == "FLOAT8E5M2":
expected = float8e5m2_to_float32(
vect_float32_to_float8e5m2(np_fp32)
)
expected_tensor = make_tensor(
"x", TensorProto.FLOAT8E5M2, [3, 4], expected.tolist()
)
like_tensor = make_tensor(
"x", TensorProto.FLOAT8E5M2, [1], expected[:1]
)
elif to_type == "FLOAT8E5M2FNUZ":
expected = float8e5m2_to_float32(
vect_float32_to_float8e5m2(np_fp32, fn=True, uz=True),
fn=True,
uz=True,
)
expected_tensor = make_tensor(
"x", TensorProto.FLOAT8E5M2FNUZ, [3, 4], expected.tolist()
)
like_tensor = make_tensor(
"x", TensorProto.FLOAT8E5M2FNUZ, [1], expected[:1]
)
if from_type == "FLOAT":
input = np_fp32.reshape((3, 4))
output = expected_tensor
like = like_tensor
else:
assert to_type == "FLOAT"
input = expected_tensor
output = expected.reshape((3, 4))
like = output.flatten()[:1]
elif from_type != "STRING":
input = np.random.random_sample(shape).astype(
helper.tensor_dtype_to_np_dtype(getattr(TensorProto, from_type))
)
if to_type == "STRING":
# Converting input to str, then give it object dtype for generating script
ss = []
for i in input.flatten():
s = str(i).encode("utf-8")
su = s.decode("utf-8")
ss.append(su)
output = np.array(ss).astype(object).reshape([3, 4])
else:
output = input.astype(
helper.tensor_dtype_to_np_dtype(getattr(TensorProto, to_type))
)
like = output.flatten()[0:1]
else:
input = np.array(
[
"0.47892547",
"0.48033667",
"0.49968487",
"0.81910545",
"0.47031248",
"0.816468",
"0.21087195",
"0.7229038",
"NaN",
"INF",
"+INF",
"-INF",
],
dtype=np.dtype(object),
).reshape([3, 4])
output = input.astype(
helper.tensor_dtype_to_np_dtype(getattr(TensorProto, to_type))
)
like = output.flatten()[0:1]
node = onnx.helper.make_node(
"CastLike",
inputs=["input", "like"],
outputs=["output"],
)
if input_type_proto and output_type_proto:
like_type_proto = onnx.helper.make_tensor_type_proto(
output_type_proto.tensor_type.elem_type, like.shape
)
expect(
node,
inputs=[input, like],
outputs=[output],
name="test_castlike_" + from_type + "_to_" + to_type,
input_type_protos=[input_type_proto, like_type_proto],
output_type_protos=[output_type_proto],
)
else:
expect(
node,
inputs=[input, like],
outputs=[output],
name="test_castlike_" + from_type + "_to_" + to_type,
)