File size: 9,959 Bytes
dc2106c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
# Copyright (c) ONNX Project Contributors
#
# SPDX-License-Identifier: Apache-2.0

import sys

import numpy as np

import onnx
from onnx import TensorProto, helper
from onnx.backend.test.case.base import Base
from onnx.backend.test.case.node import expect
from onnx.helper import float32_to_float8e4m3, float32_to_float8e5m2, make_tensor
from onnx.numpy_helper import float8e4m3_to_float32, float8e5m2_to_float32


class CastLike(Base):
    @staticmethod
    def export() -> None:
        shape = (3, 4)
        test_cases = [
            ("FLOAT", "FLOAT16"),
            ("FLOAT", "DOUBLE"),
            ("FLOAT16", "FLOAT"),
            ("FLOAT16", "DOUBLE"),
            ("DOUBLE", "FLOAT"),
            ("DOUBLE", "FLOAT16"),
            ("FLOAT", "STRING"),
            ("STRING", "FLOAT"),
            ("FLOAT", "BFLOAT16"),
            ("BFLOAT16", "FLOAT"),
            ("FLOAT", "FLOAT8E4M3FN"),
            ("FLOAT", "FLOAT8E4M3FNUZ"),
            ("FLOAT8E4M3FN", "FLOAT"),
            ("FLOAT8E4M3FNUZ", "FLOAT"),
            ("FLOAT", "FLOAT8E5M2"),
            ("FLOAT", "FLOAT8E5M2FNUZ"),
            ("FLOAT8E5M2", "FLOAT"),
            ("FLOAT8E5M2FNUZ", "FLOAT"),
        ]

        vect_float32_to_float8e4m3 = np.vectorize(float32_to_float8e4m3)
        vect_float32_to_float8e5m2 = np.vectorize(float32_to_float8e5m2)

        for from_type, to_type in test_cases:
            input_type_proto = None
            output_type_proto = None
            if from_type == "BFLOAT16" or to_type == "BFLOAT16":
                np_fp32 = np.array(
                    [
                        "0.47892547",
                        "0.48033667",
                        "0.49968487",
                        "0.81910545",
                        "0.47031248",
                        "0.816468",
                        "0.21087195",
                        "0.7229038",
                        "NaN",
                        "INF",
                        "+INF",
                        "-INF",
                    ],
                    dtype=np.float32,
                )
                little_endisan = sys.byteorder == "little"
                np_uint16_view = np_fp32.view(dtype=np.uint16)
                np_bfp16 = (
                    np_uint16_view[1::2] if little_endisan else np_uint16_view[0::2]
                )
                if to_type == "BFLOAT16":
                    assert from_type == "FLOAT"
                    input = np_fp32.reshape([3, 4])
                    output = np_bfp16.reshape([3, 4])
                    input_type_proto = onnx.helper.make_tensor_type_proto(
                        int(TensorProto.FLOAT), input.shape
                    )
                    output_type_proto = onnx.helper.make_tensor_type_proto(
                        int(TensorProto.BFLOAT16), output.shape
                    )
                else:
                    assert to_type == "FLOAT"
                    input = np_bfp16.reshape([3, 4])
                    # convert bfloat to FLOAT
                    np_fp32_zeros = np.zeros((len(np_bfp16) * 2,), dtype=np.uint16)
                    if little_endisan:
                        np_fp32_zeros[1::2] = np_bfp16
                    else:
                        np_fp32_zeros[0::2] = np_bfp16
                    np_fp32_from_bfloat = np_fp32_zeros.view(dtype=np.float32)
                    output = np_fp32_from_bfloat.reshape([3, 4])
                    input_type_proto = onnx.helper.make_tensor_type_proto(
                        int(TensorProto.BFLOAT16), input.shape
                    )
                    output_type_proto = onnx.helper.make_tensor_type_proto(
                        int(TensorProto.FLOAT), output.shape
                    )
                like = output.flatten()[0:1]
            elif from_type in (
                "FLOAT8E4M3FN",
                "FLOAT8E4M3FNUZ",
                "FLOAT8E5M2",
                "FLOAT8E5M2FNUZ",
            ) or to_type in (
                "FLOAT8E4M3FN",
                "FLOAT8E4M3FNUZ",
                "FLOAT8E5M2",
                "FLOAT8E5M2FNUZ",
            ):
                np_fp32 = np.array(
                    [
                        "0.47892547",
                        "0.48033667",
                        "0.49968487",
                        "0.81910545",
                        "0.47031248",
                        "0.816468",
                        "0.21087195",
                        "0.7229038",
                        "NaN",
                        "INF",
                        "+INF",
                        "-INF",
                    ],
                    dtype=np.float32,
                )
                if to_type == "FLOAT8E4M3FN":
                    expected = float8e4m3_to_float32(
                        vect_float32_to_float8e4m3(np_fp32)
                    )
                    expected_tensor = make_tensor(
                        "x", TensorProto.FLOAT8E4M3FN, [3, 4], expected.tolist()
                    )
                    like_tensor = make_tensor(
                        "x", TensorProto.FLOAT8E4M3FN, [1], expected[:1]
                    )
                elif to_type == "FLOAT8E4M3FNUZ":
                    expected = float8e4m3_to_float32(
                        vect_float32_to_float8e4m3(np_fp32, uz=True), uz=True
                    )
                    expected_tensor = make_tensor(
                        "x", TensorProto.FLOAT8E4M3FNUZ, [3, 4], expected.tolist()
                    )
                    like_tensor = make_tensor(
                        "x", TensorProto.FLOAT8E4M3FNUZ, [1], expected[:1]
                    )
                elif to_type == "FLOAT8E5M2":
                    expected = float8e5m2_to_float32(
                        vect_float32_to_float8e5m2(np_fp32)
                    )
                    expected_tensor = make_tensor(
                        "x", TensorProto.FLOAT8E5M2, [3, 4], expected.tolist()
                    )
                    like_tensor = make_tensor(
                        "x", TensorProto.FLOAT8E5M2, [1], expected[:1]
                    )
                elif to_type == "FLOAT8E5M2FNUZ":
                    expected = float8e5m2_to_float32(
                        vect_float32_to_float8e5m2(np_fp32, fn=True, uz=True),
                        fn=True,
                        uz=True,
                    )
                    expected_tensor = make_tensor(
                        "x", TensorProto.FLOAT8E5M2FNUZ, [3, 4], expected.tolist()
                    )
                    like_tensor = make_tensor(
                        "x", TensorProto.FLOAT8E5M2FNUZ, [1], expected[:1]
                    )
                if from_type == "FLOAT":
                    input = np_fp32.reshape((3, 4))
                    output = expected_tensor
                    like = like_tensor
                else:
                    assert to_type == "FLOAT"
                    input = expected_tensor
                    output = expected.reshape((3, 4))
                    like = output.flatten()[:1]
            elif from_type != "STRING":
                input = np.random.random_sample(shape).astype(
                    helper.tensor_dtype_to_np_dtype(getattr(TensorProto, from_type))
                )
                if to_type == "STRING":
                    # Converting input to str, then give it object dtype for generating script
                    ss = []
                    for i in input.flatten():
                        s = str(i).encode("utf-8")
                        su = s.decode("utf-8")
                        ss.append(su)

                    output = np.array(ss).astype(object).reshape([3, 4])
                else:
                    output = input.astype(
                        helper.tensor_dtype_to_np_dtype(getattr(TensorProto, to_type))
                    )
                like = output.flatten()[0:1]
            else:
                input = np.array(
                    [
                        "0.47892547",
                        "0.48033667",
                        "0.49968487",
                        "0.81910545",
                        "0.47031248",
                        "0.816468",
                        "0.21087195",
                        "0.7229038",
                        "NaN",
                        "INF",
                        "+INF",
                        "-INF",
                    ],
                    dtype=np.dtype(object),
                ).reshape([3, 4])
                output = input.astype(
                    helper.tensor_dtype_to_np_dtype(getattr(TensorProto, to_type))
                )
                like = output.flatten()[0:1]
            node = onnx.helper.make_node(
                "CastLike",
                inputs=["input", "like"],
                outputs=["output"],
            )
            if input_type_proto and output_type_proto:
                like_type_proto = onnx.helper.make_tensor_type_proto(
                    output_type_proto.tensor_type.elem_type, like.shape
                )

                expect(
                    node,
                    inputs=[input, like],
                    outputs=[output],
                    name="test_castlike_" + from_type + "_to_" + to_type,
                    input_type_protos=[input_type_proto, like_type_proto],
                    output_type_protos=[output_type_proto],
                )
            else:
                expect(
                    node,
                    inputs=[input, like],
                    outputs=[output],
                    name="test_castlike_" + from_type + "_to_" + to_type,
                )