Spaces:
Running
Running
# Copyright (c) ONNX Project Contributors | |
# | |
# SPDX-License-Identifier: Apache-2.0 | |
import numpy as np # type: ignore | |
import onnx | |
from onnx.backend.test.case.base import Base | |
from onnx.backend.test.case.node import expect | |
from onnx.numpy_helper import create_random_int | |
class BitwiseAnd(Base): | |
def export() -> None: | |
node = onnx.helper.make_node( | |
"BitwiseAnd", | |
inputs=["x", "y"], | |
outputs=["bitwiseand"], | |
) | |
# 2d | |
x = create_random_int((3, 4), np.int32) | |
y = create_random_int((3, 4), np.int32) | |
z = np.bitwise_and(x, y) | |
expect(node, inputs=[x, y], outputs=[z], name="test_bitwise_and_i32_2d") | |
# 3d | |
x = create_random_int((3, 4, 5), np.int16) | |
y = create_random_int((3, 4, 5), np.int16) | |
z = np.bitwise_and(x, y) | |
expect(node, inputs=[x, y], outputs=[z], name="test_bitwise_and_i16_3d") | |
def export_bitwiseand_broadcast() -> None: | |
node = onnx.helper.make_node( | |
"BitwiseAnd", | |
inputs=["x", "y"], | |
outputs=["bitwiseand"], | |
) | |
# 3d vs 1d | |
x = create_random_int((3, 4, 5), np.uint64) | |
y = create_random_int((5,), np.uint64) | |
z = np.bitwise_and(x, y) | |
expect( | |
node, inputs=[x, y], outputs=[z], name="test_bitwise_and_ui64_bcast_3v1d" | |
) | |
# 4d vs 3d | |
x = create_random_int((3, 4, 5, 6), np.uint8) | |
y = create_random_int((4, 5, 6), np.uint8) | |
z = np.bitwise_and(x, y) | |
expect(node, inputs=[x, y], outputs=[z], name="test_bitwise_and_ui8_bcast_4v3d") | |