# Copyright (c) ONNX Project Contributors # # SPDX-License-Identifier: Apache-2.0 import numpy as np # type: ignore import onnx from onnx.backend.test.case.base import Base from onnx.backend.test.case.node import expect from onnx.numpy_helper import create_random_int class BitwiseAnd(Base): @staticmethod def export() -> None: node = onnx.helper.make_node( "BitwiseAnd", inputs=["x", "y"], outputs=["bitwiseand"], ) # 2d x = create_random_int((3, 4), np.int32) y = create_random_int((3, 4), np.int32) z = np.bitwise_and(x, y) expect(node, inputs=[x, y], outputs=[z], name="test_bitwise_and_i32_2d") # 3d x = create_random_int((3, 4, 5), np.int16) y = create_random_int((3, 4, 5), np.int16) z = np.bitwise_and(x, y) expect(node, inputs=[x, y], outputs=[z], name="test_bitwise_and_i16_3d") @staticmethod def export_bitwiseand_broadcast() -> None: node = onnx.helper.make_node( "BitwiseAnd", inputs=["x", "y"], outputs=["bitwiseand"], ) # 3d vs 1d x = create_random_int((3, 4, 5), np.uint64) y = create_random_int((5,), np.uint64) z = np.bitwise_and(x, y) expect( node, inputs=[x, y], outputs=[z], name="test_bitwise_and_ui64_bcast_3v1d" ) # 4d vs 3d x = create_random_int((3, 4, 5, 6), np.uint8) y = create_random_int((4, 5, 6), np.uint8) z = np.bitwise_and(x, y) expect(node, inputs=[x, y], outputs=[z], name="test_bitwise_and_ui8_bcast_4v3d")