Kano001's picture
Upload 2707 files
dc2106c verified
raw
history blame
19.9 kB
# Copyright (c) ONNX Project Contributors
#
# SPDX-License-Identifier: Apache-2.0
import numpy as np
import onnx
from onnx.backend.test.case.base import Base
from onnx.backend.test.case.node import expect
from onnx.reference.ops.op_pool_common import (
get_output_shape_auto_pad,
get_output_shape_explicit_padding,
get_pad_shape,
pool,
)
class AveragePool(Base):
@staticmethod
def export_averagepool_2d_precomputed_pads() -> None:
"""input_shape: [1, 1, 5, 5]
output_shape: [1, 1, 5, 5]
pad_shape: [4, 4] -> [2, 2, 2, 2] by axis
"""
node = onnx.helper.make_node(
"AveragePool",
inputs=["x"],
outputs=["y"],
kernel_shape=[5, 5],
pads=[2, 2, 2, 2],
)
x = np.array(
[
[
[
[1, 2, 3, 4, 5],
[6, 7, 8, 9, 10],
[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20],
[21, 22, 23, 24, 25],
]
]
]
).astype(np.float32)
y = np.array(
[
[
[
[7, 7.5, 8, 8.5, 9],
[9.5, 10, 10.5, 11, 11.5],
[12, 12.5, 13, 13.5, 14],
[14.5, 15, 15.5, 16, 16.5],
[17, 17.5, 18, 18.5, 19],
]
]
]
).astype(np.float32)
expect(
node, inputs=[x], outputs=[y], name="test_averagepool_2d_precomputed_pads"
)
@staticmethod
def export_averagepool_2d_precomputed_pads_count_include_pad() -> None:
"""input_shape: [1, 1, 5, 5]
output_shape: [1, 1, 5, 5]
pad_shape: [4, 4] -> [2, 2, 2, 2] by axis
"""
node = onnx.helper.make_node(
"AveragePool",
inputs=["x"],
outputs=["y"],
kernel_shape=[5, 5],
pads=[2, 2, 2, 2],
count_include_pad=1,
)
x = np.array(
[
[
[
[1, 2, 3, 4, 5],
[6, 7, 8, 9, 10],
[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20],
[21, 22, 23, 24, 25],
]
]
]
).astype(np.float32)
y = np.array(
[
[
[
[2.5200, 3.6000, 4.8000, 4.0800, 3.2400],
[4.5600, 6.4000, 8.4000, 7.0400, 5.5200],
[7.2000, 10.0000, 13.0000, 10.8000, 8.4000],
[6.9600, 9.6000, 12.4000, 10.2400, 7.9200],
[6.1200, 8.4000, 10.8000, 8.8800, 6.8400],
]
]
]
).astype(np.float32)
expect(
node,
inputs=[x],
outputs=[y],
name="test_averagepool_2d_precomputed_pads_count_include_pad",
)
@staticmethod
def export_averagepool_2d_precomputed_strides() -> None:
"""input_shape: [1, 1, 5, 5]
output_shape: [1, 1, 2, 2]
"""
node = onnx.helper.make_node(
"AveragePool",
inputs=["x"],
outputs=["y"],
kernel_shape=[2, 2],
strides=[2, 2],
)
x = np.array(
[
[
[
[1, 2, 3, 4, 5],
[6, 7, 8, 9, 10],
[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20],
[21, 22, 23, 24, 25],
]
]
]
).astype(np.float32)
y = np.array([[[[4, 6], [14, 16]]]]).astype(np.float32)
expect(
node,
inputs=[x],
outputs=[y],
name="test_averagepool_2d_precomputed_strides",
)
@staticmethod
def export_averagepool_2d_precomputed_same_upper() -> None:
"""input_shape: [1, 1, 5, 5]
output_shape: [1, 1, 3, 3]
pad_shape: [2, 2] -> [1, 1, 1, 1] by axis
"""
node = onnx.helper.make_node(
"AveragePool",
inputs=["x"],
outputs=["y"],
kernel_shape=[3, 3],
strides=[2, 2],
auto_pad="SAME_UPPER",
)
x = np.array(
[
[
[
[1, 2, 3, 4, 5],
[6, 7, 8, 9, 10],
[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20],
[21, 22, 23, 24, 25],
]
]
]
).astype(np.float32)
y = np.array([[[[4, 5.5, 7], [11.5, 13, 14.5], [19, 20.5, 22]]]]).astype(
np.float32
)
expect(
node,
inputs=[x],
outputs=[y],
name="test_averagepool_2d_precomputed_same_upper",
)
@staticmethod
def export_averagepool_1d_default() -> None:
"""input_shape: [1, 3, 32]
output_shape: [1, 3, 31]
"""
node = onnx.helper.make_node(
"AveragePool",
inputs=["x"],
outputs=["y"],
kernel_shape=[2],
)
x = np.random.randn(1, 3, 32).astype(np.float32)
x_shape = np.shape(x)
pads = None
kernel_shape = [2]
strides = [1]
out_shape, _ = get_output_shape_explicit_padding(
pads, x_shape[2:], kernel_shape, strides
)
padded = x
y = pool(padded, x_shape, kernel_shape, strides, out_shape, "AVG")
expect(node, inputs=[x], outputs=[y], name="test_averagepool_1d_default")
@staticmethod
def export_averagepool_2d_default() -> None:
"""input_shape: [1, 3, 32, 32]
output_shape: [1, 3, 31, 31]
"""
node = onnx.helper.make_node(
"AveragePool",
inputs=["x"],
outputs=["y"],
kernel_shape=[2, 2],
)
x = np.random.randn(1, 3, 32, 32).astype(np.float32)
x_shape = np.shape(x)
pads = None
kernel_shape = (2, 2)
strides = (1, 1)
out_shape, _ = get_output_shape_explicit_padding(
pads, x_shape[2:], kernel_shape, strides
)
padded = x
y = pool(padded, x_shape, kernel_shape, strides, out_shape, "AVG")
expect(node, inputs=[x], outputs=[y], name="test_averagepool_2d_default")
@staticmethod
def export_averagepool_3d_default() -> None:
"""input_shape: [1, 3, 32, 32, 32]
output_shape: [1, 3, 31, 31, 31]
"""
node = onnx.helper.make_node(
"AveragePool",
inputs=["x"],
outputs=["y"],
kernel_shape=[2, 2, 2],
)
x = np.random.randn(1, 3, 32, 32, 32).astype(np.float32)
x_shape = np.shape(x)
pads = None
kernel_shape = [2, 2, 2]
strides = [1, 1, 1]
out_shape, _ = get_output_shape_explicit_padding(
pads, x_shape[2:], kernel_shape, strides
)
padded = x
y = pool(padded, x_shape, kernel_shape, strides, out_shape, "AVG")
expect(node, inputs=[x], outputs=[y], name="test_averagepool_3d_default")
@staticmethod
def export_averagepool_2d_same_upper() -> None:
"""input_shape: [1, 3, 32, 32]
output_shape: [1, 3, 32, 32]
pad_shape: [1, 1] -> [0, 1, 0, 1] by axis
"""
node = onnx.helper.make_node(
"AveragePool",
inputs=["x"],
outputs=["y"],
kernel_shape=[2, 2],
auto_pad="SAME_UPPER",
)
x = np.random.randn(1, 3, 32, 32).astype(np.float32)
x_shape = np.shape(x)
kernel_shape = (2, 2)
strides = (1, 1)
out_shape = get_output_shape_auto_pad(
"SAME_UPPER", x_shape[2:], kernel_shape, strides
)
pad_shape = get_pad_shape(
"SAME_UPPER", x_shape[2:], kernel_shape, strides, out_shape
)
pad_top = pad_shape[0] // 2
pad_bottom = pad_shape[0] - pad_top
pad_left = pad_shape[1] // 2
pad_right = pad_shape[1] - pad_left
padded = np.pad(
x,
((0, 0), (0, 0), (pad_top, pad_bottom), (pad_left, pad_right)),
mode="constant",
constant_values=np.nan,
)
pads = (pad_top, pad_left, pad_bottom, pad_right)
y = pool(padded, x_shape, kernel_shape, strides, out_shape, "AVG", pads)
expect(node, inputs=[x], outputs=[y], name="test_averagepool_2d_same_upper")
@staticmethod
def export_averagepool_2d_same_lower() -> None:
"""input_shape: [1, 3, 32, 32]
output_shape: [1, 3, 32, 32]
pad_shape: [1, 1] -> [1, 0, 1, 0] by axis
"""
node = onnx.helper.make_node(
"AveragePool",
inputs=["x"],
outputs=["y"],
kernel_shape=[2, 2],
auto_pad="SAME_LOWER",
)
x = np.random.randn(1, 3, 32, 32).astype(np.float32)
x_shape = np.shape(x)
kernel_shape = (2, 2)
strides = (1, 1)
out_shape = get_output_shape_auto_pad(
"SAME_LOWER", x_shape[2:], kernel_shape, strides
)
pad_shape = get_pad_shape(
"SAME_LOWER", x_shape[2:], kernel_shape, strides, out_shape
)
pad_bottom = pad_shape[0] // 2
pad_top = pad_shape[0] - pad_bottom
pad_right = pad_shape[1] // 2
pad_left = pad_shape[1] - pad_right
padded = np.pad(
x,
((0, 0), (0, 0), (pad_top, pad_bottom), (pad_left, pad_right)),
mode="constant",
constant_values=np.nan,
)
pads = (pad_top, pad_left, pad_bottom, pad_right)
y = pool(padded, x_shape, kernel_shape, strides, out_shape, "AVG", pads)
expect(node, inputs=[x], outputs=[y], name="test_averagepool_2d_same_lower")
@staticmethod
def export_averagepool_2d_pads() -> None:
"""input_shape: [1, 3, 28, 28]
output_shape: [1, 3, 30, 30]
pad_shape: [4, 4] -> [2, 2, 2, 2] by axis
"""
node = onnx.helper.make_node(
"AveragePool",
inputs=["x"],
outputs=["y"],
kernel_shape=[3, 3],
pads=[2, 2, 2, 2],
)
x = np.random.randn(1, 3, 28, 28).astype(np.float32)
x_shape = np.shape(x)
kernel_shape = (3, 3)
strides = (1, 1)
pad_bottom = 2
pad_top = 2
pad_right = 2
pad_left = 2
pads = [pad_top, pad_left, pad_bottom, pad_right]
out_shape, pads = get_output_shape_explicit_padding(
pads, x_shape[2:], kernel_shape, strides, ceil_mode=False
)
padded = np.pad(
x,
((0, 0), (0, 0), (pads[0], pads[2]), (pads[1], pads[3])),
mode="constant",
constant_values=np.nan,
)
y = pool(padded, x_shape, kernel_shape, strides, out_shape, "AVG", pads)
expect(node, inputs=[x], outputs=[y], name="test_averagepool_2d_pads")
@staticmethod
def export_averagepool_2d_pads_count_include_pad() -> None:
"""input_shape: [1, 3, 28, 28]
output_shape: [1, 3, 30, 30]
pad_shape: [4, 4] -> [2, 2, 2, 2] by axis
"""
node = onnx.helper.make_node(
"AveragePool",
inputs=["x"],
outputs=["y"],
kernel_shape=[3, 3],
pads=[2, 2, 2, 2],
count_include_pad=1,
)
x = np.random.randn(1, 3, 28, 28).astype(np.float32)
x_shape = np.shape(x)
dilations = (1, 1)
kernel_shape = (3, 3)
strides = (1, 1)
pad_bottom = 2
pad_top = 2
pad_right = 2
pad_left = 2
pads = [pad_top, pad_left, pad_bottom, pad_right]
out_shape, pads = get_output_shape_explicit_padding(
pads, x_shape[2:], kernel_shape, strides, dilations, ceil_mode=False
)
padded = np.pad(
x,
((0, 0), (0, 0), (pads[0], pads[2]), (pads[1], pads[3])),
mode="constant",
constant_values=0,
)
y = pool(
padded,
x_shape,
kernel_shape,
strides,
out_shape,
"AVG",
pads,
count_include_pad=1,
)
expect(
node,
inputs=[x],
outputs=[y],
name="test_averagepool_2d_pads_count_include_pad",
)
@staticmethod
def export_averagepool_2d_strides() -> None:
"""input_shape: [1, 3, 32, 32]
output_shape: [1, 3, 10, 10]
"""
node = onnx.helper.make_node(
"AveragePool",
inputs=["x"],
outputs=["y"],
kernel_shape=[5, 5],
strides=[3, 3],
)
x = np.random.randn(1, 3, 32, 32).astype(np.float32)
x_shape = np.shape(x)
kernel_shape = (5, 5)
strides = (3, 3)
out_shape, pads = get_output_shape_explicit_padding(
None, x_shape[2:], kernel_shape, strides, ceil_mode=False
)
padded = x
y = pool(padded, x_shape, kernel_shape, strides, out_shape, "AVG", pads)
expect(node, inputs=[x], outputs=[y], name="test_averagepool_2d_strides")
@staticmethod
def export_averagepool_2d_ceil() -> None:
"""input_shape: [1, 1, 4, 4]
output_shape: [1, 1, 2, 2]
"""
node = onnx.helper.make_node(
"AveragePool",
inputs=["x"],
outputs=["y"],
kernel_shape=[3, 3],
strides=[2, 2],
ceil_mode=True,
)
x = np.array(
[
[
[
[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12],
[13, 14, 15, 16],
]
]
]
).astype(np.float32)
y = np.array([[[[6, 7.5], [12, 13.5]]]]).astype(np.float32)
expect(node, inputs=[x], outputs=[y], name="test_averagepool_2d_ceil")
@staticmethod
def export_averagepool_2d_dilations() -> None:
"""input_shape: [1, 1, 4, 4]
output_shape: [1, 1, 2, 2]
"""
node = onnx.helper.make_node(
"AveragePool",
inputs=["x"],
outputs=["y"],
kernel_shape=[2, 2],
strides=[1, 1],
dilations=[2, 2],
ceil_mode=True,
)
# input shape: [1, 1, 4, 4]
x = np.array(
[
[
[
[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12],
[13, 14, 15, 16],
]
]
]
).astype(np.float32)
y = np.array([[[[6, 7], [10, 11]]]]).astype(np.float32)
expect(node, inputs=[x], outputs=[y], name="test_averagepool_2d_dilations")
@staticmethod
def export_averagepool_3d_dilations() -> None:
"""input_shape: [1, 1, 4, 4]
output_shape: [1, 1, 2, 2]
"""
node = onnx.helper.make_node(
"AveragePool",
inputs=["x"],
outputs=["y"],
kernel_shape=[2, 2, 2],
strides=[1, 1, 1],
dilations=[2, 2, 2],
ceil_mode=True,
)
# input shape: [1, 1, 4, 4, 4]
x = np.array(
[
[
[
[
[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12],
[13, 14, 15, 16],
],
[
[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12],
[13, 14, 15, 16],
],
[
[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12],
[13, 14, 15, 16],
],
[
[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12],
[13, 14, 15, 16],
],
]
]
]
).astype(np.float32)
y = np.array([[[[[6, 7], [10, 11]], [[6, 7], [10, 11]]]]]).astype(np.float32)
expect(
node, inputs=[x], outputs=[y], name="test_averagepool_3d_dilations_small"
)
@staticmethod
def export_averagepool_3d_dilations_large() -> None:
x_shape = (32, 32, 32)
dilations = (2, 2, 2)
kernel_shape = (5, 5, 5)
strides = (3, 3, 3)
count_include_pad = 0
for count_include_pad in (0, 1):
for ceil_mode in (True, False):
node = onnx.helper.make_node(
"AveragePool",
inputs=["x"],
outputs=["y"],
kernel_shape=kernel_shape,
strides=strides,
dilations=dilations,
count_include_pad=count_include_pad,
ceil_mode=ceil_mode,
)
x = np.random.randn(1, 1, *x_shape).astype(np.float32)
out_shape, pads = get_output_shape_explicit_padding(
None,
x_shape,
kernel_shape,
strides,
dilations=dilations,
ceil_mode=ceil_mode,
)
padded = np.pad(
x,
(
(0, 0),
(0, 0),
(pads[0], pads[3]),
(pads[1], pads[4]),
(pads[2], pads[5]),
),
mode="constant",
constant_values=0 if count_include_pad == 1 else np.nan,
)
y = pool(
padded,
(1, 1, *x_shape),
kernel_shape,
strides,
out_shape,
"AVG",
pads=pads,
dilations=dilations,
count_include_pad=count_include_pad,
)
test_name = f"test_averagepool_3d_dilations_large_count_include_pad_is_{count_include_pad}_ceil_mode_is_{ceil_mode}"
expect(node, inputs=[x], outputs=[y], name=test_name)