Spaces:
Running
Running
# Copyright (c) ONNX Project Contributors | |
# | |
# SPDX-License-Identifier: Apache-2.0 | |
import numpy as np | |
import onnx | |
from onnx.backend.test.case.base import Base | |
from onnx.backend.test.case.node import expect | |
from onnx.reference.ops.op_pool_common import ( | |
get_output_shape_auto_pad, | |
get_output_shape_explicit_padding, | |
get_pad_shape, | |
pool, | |
) | |
class AveragePool(Base): | |
def export_averagepool_2d_precomputed_pads() -> None: | |
"""input_shape: [1, 1, 5, 5] | |
output_shape: [1, 1, 5, 5] | |
pad_shape: [4, 4] -> [2, 2, 2, 2] by axis | |
""" | |
node = onnx.helper.make_node( | |
"AveragePool", | |
inputs=["x"], | |
outputs=["y"], | |
kernel_shape=[5, 5], | |
pads=[2, 2, 2, 2], | |
) | |
x = np.array( | |
[ | |
[ | |
[ | |
[1, 2, 3, 4, 5], | |
[6, 7, 8, 9, 10], | |
[11, 12, 13, 14, 15], | |
[16, 17, 18, 19, 20], | |
[21, 22, 23, 24, 25], | |
] | |
] | |
] | |
).astype(np.float32) | |
y = np.array( | |
[ | |
[ | |
[ | |
[7, 7.5, 8, 8.5, 9], | |
[9.5, 10, 10.5, 11, 11.5], | |
[12, 12.5, 13, 13.5, 14], | |
[14.5, 15, 15.5, 16, 16.5], | |
[17, 17.5, 18, 18.5, 19], | |
] | |
] | |
] | |
).astype(np.float32) | |
expect( | |
node, inputs=[x], outputs=[y], name="test_averagepool_2d_precomputed_pads" | |
) | |
def export_averagepool_2d_precomputed_pads_count_include_pad() -> None: | |
"""input_shape: [1, 1, 5, 5] | |
output_shape: [1, 1, 5, 5] | |
pad_shape: [4, 4] -> [2, 2, 2, 2] by axis | |
""" | |
node = onnx.helper.make_node( | |
"AveragePool", | |
inputs=["x"], | |
outputs=["y"], | |
kernel_shape=[5, 5], | |
pads=[2, 2, 2, 2], | |
count_include_pad=1, | |
) | |
x = np.array( | |
[ | |
[ | |
[ | |
[1, 2, 3, 4, 5], | |
[6, 7, 8, 9, 10], | |
[11, 12, 13, 14, 15], | |
[16, 17, 18, 19, 20], | |
[21, 22, 23, 24, 25], | |
] | |
] | |
] | |
).astype(np.float32) | |
y = np.array( | |
[ | |
[ | |
[ | |
[2.5200, 3.6000, 4.8000, 4.0800, 3.2400], | |
[4.5600, 6.4000, 8.4000, 7.0400, 5.5200], | |
[7.2000, 10.0000, 13.0000, 10.8000, 8.4000], | |
[6.9600, 9.6000, 12.4000, 10.2400, 7.9200], | |
[6.1200, 8.4000, 10.8000, 8.8800, 6.8400], | |
] | |
] | |
] | |
).astype(np.float32) | |
expect( | |
node, | |
inputs=[x], | |
outputs=[y], | |
name="test_averagepool_2d_precomputed_pads_count_include_pad", | |
) | |
def export_averagepool_2d_precomputed_strides() -> None: | |
"""input_shape: [1, 1, 5, 5] | |
output_shape: [1, 1, 2, 2] | |
""" | |
node = onnx.helper.make_node( | |
"AveragePool", | |
inputs=["x"], | |
outputs=["y"], | |
kernel_shape=[2, 2], | |
strides=[2, 2], | |
) | |
x = np.array( | |
[ | |
[ | |
[ | |
[1, 2, 3, 4, 5], | |
[6, 7, 8, 9, 10], | |
[11, 12, 13, 14, 15], | |
[16, 17, 18, 19, 20], | |
[21, 22, 23, 24, 25], | |
] | |
] | |
] | |
).astype(np.float32) | |
y = np.array([[[[4, 6], [14, 16]]]]).astype(np.float32) | |
expect( | |
node, | |
inputs=[x], | |
outputs=[y], | |
name="test_averagepool_2d_precomputed_strides", | |
) | |
def export_averagepool_2d_precomputed_same_upper() -> None: | |
"""input_shape: [1, 1, 5, 5] | |
output_shape: [1, 1, 3, 3] | |
pad_shape: [2, 2] -> [1, 1, 1, 1] by axis | |
""" | |
node = onnx.helper.make_node( | |
"AveragePool", | |
inputs=["x"], | |
outputs=["y"], | |
kernel_shape=[3, 3], | |
strides=[2, 2], | |
auto_pad="SAME_UPPER", | |
) | |
x = np.array( | |
[ | |
[ | |
[ | |
[1, 2, 3, 4, 5], | |
[6, 7, 8, 9, 10], | |
[11, 12, 13, 14, 15], | |
[16, 17, 18, 19, 20], | |
[21, 22, 23, 24, 25], | |
] | |
] | |
] | |
).astype(np.float32) | |
y = np.array([[[[4, 5.5, 7], [11.5, 13, 14.5], [19, 20.5, 22]]]]).astype( | |
np.float32 | |
) | |
expect( | |
node, | |
inputs=[x], | |
outputs=[y], | |
name="test_averagepool_2d_precomputed_same_upper", | |
) | |
def export_averagepool_1d_default() -> None: | |
"""input_shape: [1, 3, 32] | |
output_shape: [1, 3, 31] | |
""" | |
node = onnx.helper.make_node( | |
"AveragePool", | |
inputs=["x"], | |
outputs=["y"], | |
kernel_shape=[2], | |
) | |
x = np.random.randn(1, 3, 32).astype(np.float32) | |
x_shape = np.shape(x) | |
pads = None | |
kernel_shape = [2] | |
strides = [1] | |
out_shape, _ = get_output_shape_explicit_padding( | |
pads, x_shape[2:], kernel_shape, strides | |
) | |
padded = x | |
y = pool(padded, x_shape, kernel_shape, strides, out_shape, "AVG") | |
expect(node, inputs=[x], outputs=[y], name="test_averagepool_1d_default") | |
def export_averagepool_2d_default() -> None: | |
"""input_shape: [1, 3, 32, 32] | |
output_shape: [1, 3, 31, 31] | |
""" | |
node = onnx.helper.make_node( | |
"AveragePool", | |
inputs=["x"], | |
outputs=["y"], | |
kernel_shape=[2, 2], | |
) | |
x = np.random.randn(1, 3, 32, 32).astype(np.float32) | |
x_shape = np.shape(x) | |
pads = None | |
kernel_shape = (2, 2) | |
strides = (1, 1) | |
out_shape, _ = get_output_shape_explicit_padding( | |
pads, x_shape[2:], kernel_shape, strides | |
) | |
padded = x | |
y = pool(padded, x_shape, kernel_shape, strides, out_shape, "AVG") | |
expect(node, inputs=[x], outputs=[y], name="test_averagepool_2d_default") | |
def export_averagepool_3d_default() -> None: | |
"""input_shape: [1, 3, 32, 32, 32] | |
output_shape: [1, 3, 31, 31, 31] | |
""" | |
node = onnx.helper.make_node( | |
"AveragePool", | |
inputs=["x"], | |
outputs=["y"], | |
kernel_shape=[2, 2, 2], | |
) | |
x = np.random.randn(1, 3, 32, 32, 32).astype(np.float32) | |
x_shape = np.shape(x) | |
pads = None | |
kernel_shape = [2, 2, 2] | |
strides = [1, 1, 1] | |
out_shape, _ = get_output_shape_explicit_padding( | |
pads, x_shape[2:], kernel_shape, strides | |
) | |
padded = x | |
y = pool(padded, x_shape, kernel_shape, strides, out_shape, "AVG") | |
expect(node, inputs=[x], outputs=[y], name="test_averagepool_3d_default") | |
def export_averagepool_2d_same_upper() -> None: | |
"""input_shape: [1, 3, 32, 32] | |
output_shape: [1, 3, 32, 32] | |
pad_shape: [1, 1] -> [0, 1, 0, 1] by axis | |
""" | |
node = onnx.helper.make_node( | |
"AveragePool", | |
inputs=["x"], | |
outputs=["y"], | |
kernel_shape=[2, 2], | |
auto_pad="SAME_UPPER", | |
) | |
x = np.random.randn(1, 3, 32, 32).astype(np.float32) | |
x_shape = np.shape(x) | |
kernel_shape = (2, 2) | |
strides = (1, 1) | |
out_shape = get_output_shape_auto_pad( | |
"SAME_UPPER", x_shape[2:], kernel_shape, strides | |
) | |
pad_shape = get_pad_shape( | |
"SAME_UPPER", x_shape[2:], kernel_shape, strides, out_shape | |
) | |
pad_top = pad_shape[0] // 2 | |
pad_bottom = pad_shape[0] - pad_top | |
pad_left = pad_shape[1] // 2 | |
pad_right = pad_shape[1] - pad_left | |
padded = np.pad( | |
x, | |
((0, 0), (0, 0), (pad_top, pad_bottom), (pad_left, pad_right)), | |
mode="constant", | |
constant_values=np.nan, | |
) | |
pads = (pad_top, pad_left, pad_bottom, pad_right) | |
y = pool(padded, x_shape, kernel_shape, strides, out_shape, "AVG", pads) | |
expect(node, inputs=[x], outputs=[y], name="test_averagepool_2d_same_upper") | |
def export_averagepool_2d_same_lower() -> None: | |
"""input_shape: [1, 3, 32, 32] | |
output_shape: [1, 3, 32, 32] | |
pad_shape: [1, 1] -> [1, 0, 1, 0] by axis | |
""" | |
node = onnx.helper.make_node( | |
"AveragePool", | |
inputs=["x"], | |
outputs=["y"], | |
kernel_shape=[2, 2], | |
auto_pad="SAME_LOWER", | |
) | |
x = np.random.randn(1, 3, 32, 32).astype(np.float32) | |
x_shape = np.shape(x) | |
kernel_shape = (2, 2) | |
strides = (1, 1) | |
out_shape = get_output_shape_auto_pad( | |
"SAME_LOWER", x_shape[2:], kernel_shape, strides | |
) | |
pad_shape = get_pad_shape( | |
"SAME_LOWER", x_shape[2:], kernel_shape, strides, out_shape | |
) | |
pad_bottom = pad_shape[0] // 2 | |
pad_top = pad_shape[0] - pad_bottom | |
pad_right = pad_shape[1] // 2 | |
pad_left = pad_shape[1] - pad_right | |
padded = np.pad( | |
x, | |
((0, 0), (0, 0), (pad_top, pad_bottom), (pad_left, pad_right)), | |
mode="constant", | |
constant_values=np.nan, | |
) | |
pads = (pad_top, pad_left, pad_bottom, pad_right) | |
y = pool(padded, x_shape, kernel_shape, strides, out_shape, "AVG", pads) | |
expect(node, inputs=[x], outputs=[y], name="test_averagepool_2d_same_lower") | |
def export_averagepool_2d_pads() -> None: | |
"""input_shape: [1, 3, 28, 28] | |
output_shape: [1, 3, 30, 30] | |
pad_shape: [4, 4] -> [2, 2, 2, 2] by axis | |
""" | |
node = onnx.helper.make_node( | |
"AveragePool", | |
inputs=["x"], | |
outputs=["y"], | |
kernel_shape=[3, 3], | |
pads=[2, 2, 2, 2], | |
) | |
x = np.random.randn(1, 3, 28, 28).astype(np.float32) | |
x_shape = np.shape(x) | |
kernel_shape = (3, 3) | |
strides = (1, 1) | |
pad_bottom = 2 | |
pad_top = 2 | |
pad_right = 2 | |
pad_left = 2 | |
pads = [pad_top, pad_left, pad_bottom, pad_right] | |
out_shape, pads = get_output_shape_explicit_padding( | |
pads, x_shape[2:], kernel_shape, strides, ceil_mode=False | |
) | |
padded = np.pad( | |
x, | |
((0, 0), (0, 0), (pads[0], pads[2]), (pads[1], pads[3])), | |
mode="constant", | |
constant_values=np.nan, | |
) | |
y = pool(padded, x_shape, kernel_shape, strides, out_shape, "AVG", pads) | |
expect(node, inputs=[x], outputs=[y], name="test_averagepool_2d_pads") | |
def export_averagepool_2d_pads_count_include_pad() -> None: | |
"""input_shape: [1, 3, 28, 28] | |
output_shape: [1, 3, 30, 30] | |
pad_shape: [4, 4] -> [2, 2, 2, 2] by axis | |
""" | |
node = onnx.helper.make_node( | |
"AveragePool", | |
inputs=["x"], | |
outputs=["y"], | |
kernel_shape=[3, 3], | |
pads=[2, 2, 2, 2], | |
count_include_pad=1, | |
) | |
x = np.random.randn(1, 3, 28, 28).astype(np.float32) | |
x_shape = np.shape(x) | |
dilations = (1, 1) | |
kernel_shape = (3, 3) | |
strides = (1, 1) | |
pad_bottom = 2 | |
pad_top = 2 | |
pad_right = 2 | |
pad_left = 2 | |
pads = [pad_top, pad_left, pad_bottom, pad_right] | |
out_shape, pads = get_output_shape_explicit_padding( | |
pads, x_shape[2:], kernel_shape, strides, dilations, ceil_mode=False | |
) | |
padded = np.pad( | |
x, | |
((0, 0), (0, 0), (pads[0], pads[2]), (pads[1], pads[3])), | |
mode="constant", | |
constant_values=0, | |
) | |
y = pool( | |
padded, | |
x_shape, | |
kernel_shape, | |
strides, | |
out_shape, | |
"AVG", | |
pads, | |
count_include_pad=1, | |
) | |
expect( | |
node, | |
inputs=[x], | |
outputs=[y], | |
name="test_averagepool_2d_pads_count_include_pad", | |
) | |
def export_averagepool_2d_strides() -> None: | |
"""input_shape: [1, 3, 32, 32] | |
output_shape: [1, 3, 10, 10] | |
""" | |
node = onnx.helper.make_node( | |
"AveragePool", | |
inputs=["x"], | |
outputs=["y"], | |
kernel_shape=[5, 5], | |
strides=[3, 3], | |
) | |
x = np.random.randn(1, 3, 32, 32).astype(np.float32) | |
x_shape = np.shape(x) | |
kernel_shape = (5, 5) | |
strides = (3, 3) | |
out_shape, pads = get_output_shape_explicit_padding( | |
None, x_shape[2:], kernel_shape, strides, ceil_mode=False | |
) | |
padded = x | |
y = pool(padded, x_shape, kernel_shape, strides, out_shape, "AVG", pads) | |
expect(node, inputs=[x], outputs=[y], name="test_averagepool_2d_strides") | |
def export_averagepool_2d_ceil() -> None: | |
"""input_shape: [1, 1, 4, 4] | |
output_shape: [1, 1, 2, 2] | |
""" | |
node = onnx.helper.make_node( | |
"AveragePool", | |
inputs=["x"], | |
outputs=["y"], | |
kernel_shape=[3, 3], | |
strides=[2, 2], | |
ceil_mode=True, | |
) | |
x = np.array( | |
[ | |
[ | |
[ | |
[1, 2, 3, 4], | |
[5, 6, 7, 8], | |
[9, 10, 11, 12], | |
[13, 14, 15, 16], | |
] | |
] | |
] | |
).astype(np.float32) | |
y = np.array([[[[6, 7.5], [12, 13.5]]]]).astype(np.float32) | |
expect(node, inputs=[x], outputs=[y], name="test_averagepool_2d_ceil") | |
def export_averagepool_2d_dilations() -> None: | |
"""input_shape: [1, 1, 4, 4] | |
output_shape: [1, 1, 2, 2] | |
""" | |
node = onnx.helper.make_node( | |
"AveragePool", | |
inputs=["x"], | |
outputs=["y"], | |
kernel_shape=[2, 2], | |
strides=[1, 1], | |
dilations=[2, 2], | |
ceil_mode=True, | |
) | |
# input shape: [1, 1, 4, 4] | |
x = np.array( | |
[ | |
[ | |
[ | |
[1, 2, 3, 4], | |
[5, 6, 7, 8], | |
[9, 10, 11, 12], | |
[13, 14, 15, 16], | |
] | |
] | |
] | |
).astype(np.float32) | |
y = np.array([[[[6, 7], [10, 11]]]]).astype(np.float32) | |
expect(node, inputs=[x], outputs=[y], name="test_averagepool_2d_dilations") | |
def export_averagepool_3d_dilations() -> None: | |
"""input_shape: [1, 1, 4, 4] | |
output_shape: [1, 1, 2, 2] | |
""" | |
node = onnx.helper.make_node( | |
"AveragePool", | |
inputs=["x"], | |
outputs=["y"], | |
kernel_shape=[2, 2, 2], | |
strides=[1, 1, 1], | |
dilations=[2, 2, 2], | |
ceil_mode=True, | |
) | |
# input shape: [1, 1, 4, 4, 4] | |
x = np.array( | |
[ | |
[ | |
[ | |
[ | |
[1, 2, 3, 4], | |
[5, 6, 7, 8], | |
[9, 10, 11, 12], | |
[13, 14, 15, 16], | |
], | |
[ | |
[1, 2, 3, 4], | |
[5, 6, 7, 8], | |
[9, 10, 11, 12], | |
[13, 14, 15, 16], | |
], | |
[ | |
[1, 2, 3, 4], | |
[5, 6, 7, 8], | |
[9, 10, 11, 12], | |
[13, 14, 15, 16], | |
], | |
[ | |
[1, 2, 3, 4], | |
[5, 6, 7, 8], | |
[9, 10, 11, 12], | |
[13, 14, 15, 16], | |
], | |
] | |
] | |
] | |
).astype(np.float32) | |
y = np.array([[[[[6, 7], [10, 11]], [[6, 7], [10, 11]]]]]).astype(np.float32) | |
expect( | |
node, inputs=[x], outputs=[y], name="test_averagepool_3d_dilations_small" | |
) | |
def export_averagepool_3d_dilations_large() -> None: | |
x_shape = (32, 32, 32) | |
dilations = (2, 2, 2) | |
kernel_shape = (5, 5, 5) | |
strides = (3, 3, 3) | |
count_include_pad = 0 | |
for count_include_pad in (0, 1): | |
for ceil_mode in (True, False): | |
node = onnx.helper.make_node( | |
"AveragePool", | |
inputs=["x"], | |
outputs=["y"], | |
kernel_shape=kernel_shape, | |
strides=strides, | |
dilations=dilations, | |
count_include_pad=count_include_pad, | |
ceil_mode=ceil_mode, | |
) | |
x = np.random.randn(1, 1, *x_shape).astype(np.float32) | |
out_shape, pads = get_output_shape_explicit_padding( | |
None, | |
x_shape, | |
kernel_shape, | |
strides, | |
dilations=dilations, | |
ceil_mode=ceil_mode, | |
) | |
padded = np.pad( | |
x, | |
( | |
(0, 0), | |
(0, 0), | |
(pads[0], pads[3]), | |
(pads[1], pads[4]), | |
(pads[2], pads[5]), | |
), | |
mode="constant", | |
constant_values=0 if count_include_pad == 1 else np.nan, | |
) | |
y = pool( | |
padded, | |
(1, 1, *x_shape), | |
kernel_shape, | |
strides, | |
out_shape, | |
"AVG", | |
pads=pads, | |
dilations=dilations, | |
count_include_pad=count_include_pad, | |
) | |
test_name = f"test_averagepool_3d_dilations_large_count_include_pad_is_{count_include_pad}_ceil_mode_is_{ceil_mode}" | |
expect(node, inputs=[x], outputs=[y], name=test_name) | |