# Copyright (c) ONNX Project Contributors # # SPDX-License-Identifier: Apache-2.0 import numpy as np import onnx from onnx.backend.test.case.base import Base from onnx.backend.test.case.node import expect from onnx.reference.ops.op_pool_common import ( get_output_shape_auto_pad, get_output_shape_explicit_padding, get_pad_shape, pool, ) class AveragePool(Base): @staticmethod def export_averagepool_2d_precomputed_pads() -> None: """input_shape: [1, 1, 5, 5] output_shape: [1, 1, 5, 5] pad_shape: [4, 4] -> [2, 2, 2, 2] by axis """ node = onnx.helper.make_node( "AveragePool", inputs=["x"], outputs=["y"], kernel_shape=[5, 5], pads=[2, 2, 2, 2], ) x = np.array( [ [ [ [1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15], [16, 17, 18, 19, 20], [21, 22, 23, 24, 25], ] ] ] ).astype(np.float32) y = np.array( [ [ [ [7, 7.5, 8, 8.5, 9], [9.5, 10, 10.5, 11, 11.5], [12, 12.5, 13, 13.5, 14], [14.5, 15, 15.5, 16, 16.5], [17, 17.5, 18, 18.5, 19], ] ] ] ).astype(np.float32) expect( node, inputs=[x], outputs=[y], name="test_averagepool_2d_precomputed_pads" ) @staticmethod def export_averagepool_2d_precomputed_pads_count_include_pad() -> None: """input_shape: [1, 1, 5, 5] output_shape: [1, 1, 5, 5] pad_shape: [4, 4] -> [2, 2, 2, 2] by axis """ node = onnx.helper.make_node( "AveragePool", inputs=["x"], outputs=["y"], kernel_shape=[5, 5], pads=[2, 2, 2, 2], count_include_pad=1, ) x = np.array( [ [ [ [1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15], [16, 17, 18, 19, 20], [21, 22, 23, 24, 25], ] ] ] ).astype(np.float32) y = np.array( [ [ [ [2.5200, 3.6000, 4.8000, 4.0800, 3.2400], [4.5600, 6.4000, 8.4000, 7.0400, 5.5200], [7.2000, 10.0000, 13.0000, 10.8000, 8.4000], [6.9600, 9.6000, 12.4000, 10.2400, 7.9200], [6.1200, 8.4000, 10.8000, 8.8800, 6.8400], ] ] ] ).astype(np.float32) expect( node, inputs=[x], outputs=[y], name="test_averagepool_2d_precomputed_pads_count_include_pad", ) @staticmethod def export_averagepool_2d_precomputed_strides() -> None: """input_shape: [1, 1, 5, 5] output_shape: [1, 1, 2, 2] """ node = onnx.helper.make_node( "AveragePool", inputs=["x"], outputs=["y"], kernel_shape=[2, 2], strides=[2, 2], ) x = np.array( [ [ [ [1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15], [16, 17, 18, 19, 20], [21, 22, 23, 24, 25], ] ] ] ).astype(np.float32) y = np.array([[[[4, 6], [14, 16]]]]).astype(np.float32) expect( node, inputs=[x], outputs=[y], name="test_averagepool_2d_precomputed_strides", ) @staticmethod def export_averagepool_2d_precomputed_same_upper() -> None: """input_shape: [1, 1, 5, 5] output_shape: [1, 1, 3, 3] pad_shape: [2, 2] -> [1, 1, 1, 1] by axis """ node = onnx.helper.make_node( "AveragePool", inputs=["x"], outputs=["y"], kernel_shape=[3, 3], strides=[2, 2], auto_pad="SAME_UPPER", ) x = np.array( [ [ [ [1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15], [16, 17, 18, 19, 20], [21, 22, 23, 24, 25], ] ] ] ).astype(np.float32) y = np.array([[[[4, 5.5, 7], [11.5, 13, 14.5], [19, 20.5, 22]]]]).astype( np.float32 ) expect( node, inputs=[x], outputs=[y], name="test_averagepool_2d_precomputed_same_upper", ) @staticmethod def export_averagepool_1d_default() -> None: """input_shape: [1, 3, 32] output_shape: [1, 3, 31] """ node = onnx.helper.make_node( "AveragePool", inputs=["x"], outputs=["y"], kernel_shape=[2], ) x = np.random.randn(1, 3, 32).astype(np.float32) x_shape = np.shape(x) pads = None kernel_shape = [2] strides = [1] out_shape, _ = get_output_shape_explicit_padding( pads, x_shape[2:], kernel_shape, strides ) padded = x y = pool(padded, x_shape, kernel_shape, strides, out_shape, "AVG") expect(node, inputs=[x], outputs=[y], name="test_averagepool_1d_default") @staticmethod def export_averagepool_2d_default() -> None: """input_shape: [1, 3, 32, 32] output_shape: [1, 3, 31, 31] """ node = onnx.helper.make_node( "AveragePool", inputs=["x"], outputs=["y"], kernel_shape=[2, 2], ) x = np.random.randn(1, 3, 32, 32).astype(np.float32) x_shape = np.shape(x) pads = None kernel_shape = (2, 2) strides = (1, 1) out_shape, _ = get_output_shape_explicit_padding( pads, x_shape[2:], kernel_shape, strides ) padded = x y = pool(padded, x_shape, kernel_shape, strides, out_shape, "AVG") expect(node, inputs=[x], outputs=[y], name="test_averagepool_2d_default") @staticmethod def export_averagepool_3d_default() -> None: """input_shape: [1, 3, 32, 32, 32] output_shape: [1, 3, 31, 31, 31] """ node = onnx.helper.make_node( "AveragePool", inputs=["x"], outputs=["y"], kernel_shape=[2, 2, 2], ) x = np.random.randn(1, 3, 32, 32, 32).astype(np.float32) x_shape = np.shape(x) pads = None kernel_shape = [2, 2, 2] strides = [1, 1, 1] out_shape, _ = get_output_shape_explicit_padding( pads, x_shape[2:], kernel_shape, strides ) padded = x y = pool(padded, x_shape, kernel_shape, strides, out_shape, "AVG") expect(node, inputs=[x], outputs=[y], name="test_averagepool_3d_default") @staticmethod def export_averagepool_2d_same_upper() -> None: """input_shape: [1, 3, 32, 32] output_shape: [1, 3, 32, 32] pad_shape: [1, 1] -> [0, 1, 0, 1] by axis """ node = onnx.helper.make_node( "AveragePool", inputs=["x"], outputs=["y"], kernel_shape=[2, 2], auto_pad="SAME_UPPER", ) x = np.random.randn(1, 3, 32, 32).astype(np.float32) x_shape = np.shape(x) kernel_shape = (2, 2) strides = (1, 1) out_shape = get_output_shape_auto_pad( "SAME_UPPER", x_shape[2:], kernel_shape, strides ) pad_shape = get_pad_shape( "SAME_UPPER", x_shape[2:], kernel_shape, strides, out_shape ) pad_top = pad_shape[0] // 2 pad_bottom = pad_shape[0] - pad_top pad_left = pad_shape[1] // 2 pad_right = pad_shape[1] - pad_left padded = np.pad( x, ((0, 0), (0, 0), (pad_top, pad_bottom), (pad_left, pad_right)), mode="constant", constant_values=np.nan, ) pads = (pad_top, pad_left, pad_bottom, pad_right) y = pool(padded, x_shape, kernel_shape, strides, out_shape, "AVG", pads) expect(node, inputs=[x], outputs=[y], name="test_averagepool_2d_same_upper") @staticmethod def export_averagepool_2d_same_lower() -> None: """input_shape: [1, 3, 32, 32] output_shape: [1, 3, 32, 32] pad_shape: [1, 1] -> [1, 0, 1, 0] by axis """ node = onnx.helper.make_node( "AveragePool", inputs=["x"], outputs=["y"], kernel_shape=[2, 2], auto_pad="SAME_LOWER", ) x = np.random.randn(1, 3, 32, 32).astype(np.float32) x_shape = np.shape(x) kernel_shape = (2, 2) strides = (1, 1) out_shape = get_output_shape_auto_pad( "SAME_LOWER", x_shape[2:], kernel_shape, strides ) pad_shape = get_pad_shape( "SAME_LOWER", x_shape[2:], kernel_shape, strides, out_shape ) pad_bottom = pad_shape[0] // 2 pad_top = pad_shape[0] - pad_bottom pad_right = pad_shape[1] // 2 pad_left = pad_shape[1] - pad_right padded = np.pad( x, ((0, 0), (0, 0), (pad_top, pad_bottom), (pad_left, pad_right)), mode="constant", constant_values=np.nan, ) pads = (pad_top, pad_left, pad_bottom, pad_right) y = pool(padded, x_shape, kernel_shape, strides, out_shape, "AVG", pads) expect(node, inputs=[x], outputs=[y], name="test_averagepool_2d_same_lower") @staticmethod def export_averagepool_2d_pads() -> None: """input_shape: [1, 3, 28, 28] output_shape: [1, 3, 30, 30] pad_shape: [4, 4] -> [2, 2, 2, 2] by axis """ node = onnx.helper.make_node( "AveragePool", inputs=["x"], outputs=["y"], kernel_shape=[3, 3], pads=[2, 2, 2, 2], ) x = np.random.randn(1, 3, 28, 28).astype(np.float32) x_shape = np.shape(x) kernel_shape = (3, 3) strides = (1, 1) pad_bottom = 2 pad_top = 2 pad_right = 2 pad_left = 2 pads = [pad_top, pad_left, pad_bottom, pad_right] out_shape, pads = get_output_shape_explicit_padding( pads, x_shape[2:], kernel_shape, strides, ceil_mode=False ) padded = np.pad( x, ((0, 0), (0, 0), (pads[0], pads[2]), (pads[1], pads[3])), mode="constant", constant_values=np.nan, ) y = pool(padded, x_shape, kernel_shape, strides, out_shape, "AVG", pads) expect(node, inputs=[x], outputs=[y], name="test_averagepool_2d_pads") @staticmethod def export_averagepool_2d_pads_count_include_pad() -> None: """input_shape: [1, 3, 28, 28] output_shape: [1, 3, 30, 30] pad_shape: [4, 4] -> [2, 2, 2, 2] by axis """ node = onnx.helper.make_node( "AveragePool", inputs=["x"], outputs=["y"], kernel_shape=[3, 3], pads=[2, 2, 2, 2], count_include_pad=1, ) x = np.random.randn(1, 3, 28, 28).astype(np.float32) x_shape = np.shape(x) dilations = (1, 1) kernel_shape = (3, 3) strides = (1, 1) pad_bottom = 2 pad_top = 2 pad_right = 2 pad_left = 2 pads = [pad_top, pad_left, pad_bottom, pad_right] out_shape, pads = get_output_shape_explicit_padding( pads, x_shape[2:], kernel_shape, strides, dilations, ceil_mode=False ) padded = np.pad( x, ((0, 0), (0, 0), (pads[0], pads[2]), (pads[1], pads[3])), mode="constant", constant_values=0, ) y = pool( padded, x_shape, kernel_shape, strides, out_shape, "AVG", pads, count_include_pad=1, ) expect( node, inputs=[x], outputs=[y], name="test_averagepool_2d_pads_count_include_pad", ) @staticmethod def export_averagepool_2d_strides() -> None: """input_shape: [1, 3, 32, 32] output_shape: [1, 3, 10, 10] """ node = onnx.helper.make_node( "AveragePool", inputs=["x"], outputs=["y"], kernel_shape=[5, 5], strides=[3, 3], ) x = np.random.randn(1, 3, 32, 32).astype(np.float32) x_shape = np.shape(x) kernel_shape = (5, 5) strides = (3, 3) out_shape, pads = get_output_shape_explicit_padding( None, x_shape[2:], kernel_shape, strides, ceil_mode=False ) padded = x y = pool(padded, x_shape, kernel_shape, strides, out_shape, "AVG", pads) expect(node, inputs=[x], outputs=[y], name="test_averagepool_2d_strides") @staticmethod def export_averagepool_2d_ceil() -> None: """input_shape: [1, 1, 4, 4] output_shape: [1, 1, 2, 2] """ node = onnx.helper.make_node( "AveragePool", inputs=["x"], outputs=["y"], kernel_shape=[3, 3], strides=[2, 2], ceil_mode=True, ) x = np.array( [ [ [ [1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16], ] ] ] ).astype(np.float32) y = np.array([[[[6, 7.5], [12, 13.5]]]]).astype(np.float32) expect(node, inputs=[x], outputs=[y], name="test_averagepool_2d_ceil") @staticmethod def export_averagepool_2d_dilations() -> None: """input_shape: [1, 1, 4, 4] output_shape: [1, 1, 2, 2] """ node = onnx.helper.make_node( "AveragePool", inputs=["x"], outputs=["y"], kernel_shape=[2, 2], strides=[1, 1], dilations=[2, 2], ceil_mode=True, ) # input shape: [1, 1, 4, 4] x = np.array( [ [ [ [1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16], ] ] ] ).astype(np.float32) y = np.array([[[[6, 7], [10, 11]]]]).astype(np.float32) expect(node, inputs=[x], outputs=[y], name="test_averagepool_2d_dilations") @staticmethod def export_averagepool_3d_dilations() -> None: """input_shape: [1, 1, 4, 4] output_shape: [1, 1, 2, 2] """ node = onnx.helper.make_node( "AveragePool", inputs=["x"], outputs=["y"], kernel_shape=[2, 2, 2], strides=[1, 1, 1], dilations=[2, 2, 2], ceil_mode=True, ) # input shape: [1, 1, 4, 4, 4] x = np.array( [ [ [ [ [1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16], ], [ [1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16], ], [ [1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16], ], [ [1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16], ], ] ] ] ).astype(np.float32) y = np.array([[[[[6, 7], [10, 11]], [[6, 7], [10, 11]]]]]).astype(np.float32) expect( node, inputs=[x], outputs=[y], name="test_averagepool_3d_dilations_small" ) @staticmethod def export_averagepool_3d_dilations_large() -> None: x_shape = (32, 32, 32) dilations = (2, 2, 2) kernel_shape = (5, 5, 5) strides = (3, 3, 3) count_include_pad = 0 for count_include_pad in (0, 1): for ceil_mode in (True, False): node = onnx.helper.make_node( "AveragePool", inputs=["x"], outputs=["y"], kernel_shape=kernel_shape, strides=strides, dilations=dilations, count_include_pad=count_include_pad, ceil_mode=ceil_mode, ) x = np.random.randn(1, 1, *x_shape).astype(np.float32) out_shape, pads = get_output_shape_explicit_padding( None, x_shape, kernel_shape, strides, dilations=dilations, ceil_mode=ceil_mode, ) padded = np.pad( x, ( (0, 0), (0, 0), (pads[0], pads[3]), (pads[1], pads[4]), (pads[2], pads[5]), ), mode="constant", constant_values=0 if count_include_pad == 1 else np.nan, ) y = pool( padded, (1, 1, *x_shape), kernel_shape, strides, out_shape, "AVG", pads=pads, dilations=dilations, count_include_pad=count_include_pad, ) test_name = f"test_averagepool_3d_dilations_large_count_include_pad_is_{count_include_pad}_ceil_mode_is_{ceil_mode}" expect(node, inputs=[x], outputs=[y], name=test_name)