Spaces:
Running
Running
import math | |
from typing import List, Optional, Tuple | |
import torch | |
import torch.nn.functional as F | |
from torch import nn, Tensor | |
__all__ = [ | |
"ResBlock", | |
"MelResNet", | |
"Stretch2d", | |
"UpsampleNetwork", | |
"WaveRNN", | |
] | |
class ResBlock(nn.Module): | |
r"""ResNet block based on *Efficient Neural Audio Synthesis* :cite:`kalchbrenner2018efficient`. | |
Args: | |
n_freq: the number of bins in a spectrogram. (Default: ``128``) | |
Examples | |
>>> resblock = ResBlock() | |
>>> input = torch.rand(10, 128, 512) # a random spectrogram | |
>>> output = resblock(input) # shape: (10, 128, 512) | |
""" | |
def __init__(self, n_freq: int = 128) -> None: | |
super().__init__() | |
self.resblock_model = nn.Sequential( | |
nn.Conv1d(in_channels=n_freq, out_channels=n_freq, kernel_size=1, bias=False), | |
nn.BatchNorm1d(n_freq), | |
nn.ReLU(inplace=True), | |
nn.Conv1d(in_channels=n_freq, out_channels=n_freq, kernel_size=1, bias=False), | |
nn.BatchNorm1d(n_freq), | |
) | |
def forward(self, specgram: Tensor) -> Tensor: | |
r"""Pass the input through the ResBlock layer. | |
Args: | |
specgram (Tensor): the input sequence to the ResBlock layer (n_batch, n_freq, n_time). | |
Return: | |
Tensor shape: (n_batch, n_freq, n_time) | |
""" | |
return self.resblock_model(specgram) + specgram | |
class MelResNet(nn.Module): | |
r"""MelResNet layer uses a stack of ResBlocks on spectrogram. | |
Args: | |
n_res_block: the number of ResBlock in stack. (Default: ``10``) | |
n_freq: the number of bins in a spectrogram. (Default: ``128``) | |
n_hidden: the number of hidden dimensions of resblock. (Default: ``128``) | |
n_output: the number of output dimensions of melresnet. (Default: ``128``) | |
kernel_size: the number of kernel size in the first Conv1d layer. (Default: ``5``) | |
Examples | |
>>> melresnet = MelResNet() | |
>>> input = torch.rand(10, 128, 512) # a random spectrogram | |
>>> output = melresnet(input) # shape: (10, 128, 508) | |
""" | |
def __init__( | |
self, n_res_block: int = 10, n_freq: int = 128, n_hidden: int = 128, n_output: int = 128, kernel_size: int = 5 | |
) -> None: | |
super().__init__() | |
ResBlocks = [ResBlock(n_hidden) for _ in range(n_res_block)] | |
self.melresnet_model = nn.Sequential( | |
nn.Conv1d(in_channels=n_freq, out_channels=n_hidden, kernel_size=kernel_size, bias=False), | |
nn.BatchNorm1d(n_hidden), | |
nn.ReLU(inplace=True), | |
*ResBlocks, | |
nn.Conv1d(in_channels=n_hidden, out_channels=n_output, kernel_size=1), | |
) | |
def forward(self, specgram: Tensor) -> Tensor: | |
r"""Pass the input through the MelResNet layer. | |
Args: | |
specgram (Tensor): the input sequence to the MelResNet layer (n_batch, n_freq, n_time). | |
Return: | |
Tensor shape: (n_batch, n_output, n_time - kernel_size + 1) | |
""" | |
return self.melresnet_model(specgram) | |
class Stretch2d(nn.Module): | |
r"""Upscale the frequency and time dimensions of a spectrogram. | |
Args: | |
time_scale: the scale factor in time dimension | |
freq_scale: the scale factor in frequency dimension | |
Examples | |
>>> stretch2d = Stretch2d(time_scale=10, freq_scale=5) | |
>>> input = torch.rand(10, 100, 512) # a random spectrogram | |
>>> output = stretch2d(input) # shape: (10, 500, 5120) | |
""" | |
def __init__(self, time_scale: int, freq_scale: int) -> None: | |
super().__init__() | |
self.freq_scale = freq_scale | |
self.time_scale = time_scale | |
def forward(self, specgram: Tensor) -> Tensor: | |
r"""Pass the input through the Stretch2d layer. | |
Args: | |
specgram (Tensor): the input sequence to the Stretch2d layer (..., n_freq, n_time). | |
Return: | |
Tensor shape: (..., n_freq * freq_scale, n_time * time_scale) | |
""" | |
return specgram.repeat_interleave(self.freq_scale, -2).repeat_interleave(self.time_scale, -1) | |
class UpsampleNetwork(nn.Module): | |
r"""Upscale the dimensions of a spectrogram. | |
Args: | |
upsample_scales: the list of upsample scales. | |
n_res_block: the number of ResBlock in stack. (Default: ``10``) | |
n_freq: the number of bins in a spectrogram. (Default: ``128``) | |
n_hidden: the number of hidden dimensions of resblock. (Default: ``128``) | |
n_output: the number of output dimensions of melresnet. (Default: ``128``) | |
kernel_size: the number of kernel size in the first Conv1d layer. (Default: ``5``) | |
Examples | |
>>> upsamplenetwork = UpsampleNetwork(upsample_scales=[4, 4, 16]) | |
>>> input = torch.rand(10, 128, 10) # a random spectrogram | |
>>> output = upsamplenetwork(input) # shape: (10, 128, 1536), (10, 128, 1536) | |
""" | |
def __init__( | |
self, | |
upsample_scales: List[int], | |
n_res_block: int = 10, | |
n_freq: int = 128, | |
n_hidden: int = 128, | |
n_output: int = 128, | |
kernel_size: int = 5, | |
) -> None: | |
super().__init__() | |
total_scale = 1 | |
for upsample_scale in upsample_scales: | |
total_scale *= upsample_scale | |
self.total_scale: int = total_scale | |
self.indent = (kernel_size - 1) // 2 * total_scale | |
self.resnet = MelResNet(n_res_block, n_freq, n_hidden, n_output, kernel_size) | |
self.resnet_stretch = Stretch2d(total_scale, 1) | |
up_layers = [] | |
for scale in upsample_scales: | |
stretch = Stretch2d(scale, 1) | |
conv = nn.Conv2d( | |
in_channels=1, out_channels=1, kernel_size=(1, scale * 2 + 1), padding=(0, scale), bias=False | |
) | |
torch.nn.init.constant_(conv.weight, 1.0 / (scale * 2 + 1)) | |
up_layers.append(stretch) | |
up_layers.append(conv) | |
self.upsample_layers = nn.Sequential(*up_layers) | |
def forward(self, specgram: Tensor) -> Tuple[Tensor, Tensor]: | |
r"""Pass the input through the UpsampleNetwork layer. | |
Args: | |
specgram (Tensor): the input sequence to the UpsampleNetwork layer (n_batch, n_freq, n_time) | |
Return: | |
Tensor shape: (n_batch, n_freq, (n_time - kernel_size + 1) * total_scale), | |
(n_batch, n_output, (n_time - kernel_size + 1) * total_scale) | |
where total_scale is the product of all elements in upsample_scales. | |
""" | |
resnet_output = self.resnet(specgram).unsqueeze(1) | |
resnet_output = self.resnet_stretch(resnet_output) | |
resnet_output = resnet_output.squeeze(1) | |
specgram = specgram.unsqueeze(1) | |
upsampling_output = self.upsample_layers(specgram) | |
upsampling_output = upsampling_output.squeeze(1)[:, :, self.indent : -self.indent] | |
return upsampling_output, resnet_output | |
class WaveRNN(nn.Module): | |
r"""WaveRNN model from *Efficient Neural Audio Synthesis* :cite:`wavernn` | |
based on the implementation from `fatchord/WaveRNN <https://github.com/fatchord/WaveRNN>`_. | |
The original implementation was introduced in *Efficient Neural Audio Synthesis* | |
:cite:`kalchbrenner2018efficient`. The input channels of waveform and spectrogram have to be 1. | |
The product of `upsample_scales` must equal `hop_length`. | |
See Also: | |
* `Training example <https://github.com/pytorch/audio/tree/release/0.12/examples/pipeline_wavernn>`__ | |
* :class:`torchaudio.pipelines.Tacotron2TTSBundle`: TTS pipeline with pretrained model. | |
Args: | |
upsample_scales: the list of upsample scales. | |
n_classes: the number of output classes. | |
hop_length: the number of samples between the starts of consecutive frames. | |
n_res_block: the number of ResBlock in stack. (Default: ``10``) | |
n_rnn: the dimension of RNN layer. (Default: ``512``) | |
n_fc: the dimension of fully connected layer. (Default: ``512``) | |
kernel_size: the number of kernel size in the first Conv1d layer. (Default: ``5``) | |
n_freq: the number of bins in a spectrogram. (Default: ``128``) | |
n_hidden: the number of hidden dimensions of resblock. (Default: ``128``) | |
n_output: the number of output dimensions of melresnet. (Default: ``128``) | |
Example | |
>>> wavernn = WaveRNN(upsample_scales=[5,5,8], n_classes=512, hop_length=200) | |
>>> waveform, sample_rate = torchaudio.load(file) | |
>>> # waveform shape: (n_batch, n_channel, (n_time - kernel_size + 1) * hop_length) | |
>>> specgram = MelSpectrogram(sample_rate)(waveform) # shape: (n_batch, n_channel, n_freq, n_time) | |
>>> output = wavernn(waveform, specgram) | |
>>> # output shape: (n_batch, n_channel, (n_time - kernel_size + 1) * hop_length, n_classes) | |
""" | |
def __init__( | |
self, | |
upsample_scales: List[int], | |
n_classes: int, | |
hop_length: int, | |
n_res_block: int = 10, | |
n_rnn: int = 512, | |
n_fc: int = 512, | |
kernel_size: int = 5, | |
n_freq: int = 128, | |
n_hidden: int = 128, | |
n_output: int = 128, | |
) -> None: | |
super().__init__() | |
self.kernel_size = kernel_size | |
self._pad = (kernel_size - 1 if kernel_size % 2 else kernel_size) // 2 | |
self.n_rnn = n_rnn | |
self.n_aux = n_output // 4 | |
self.hop_length = hop_length | |
self.n_classes = n_classes | |
self.n_bits: int = int(math.log2(self.n_classes)) | |
total_scale = 1 | |
for upsample_scale in upsample_scales: | |
total_scale *= upsample_scale | |
if total_scale != self.hop_length: | |
raise ValueError(f"Expected: total_scale == hop_length, but found {total_scale} != {hop_length}") | |
self.upsample = UpsampleNetwork(upsample_scales, n_res_block, n_freq, n_hidden, n_output, kernel_size) | |
self.fc = nn.Linear(n_freq + self.n_aux + 1, n_rnn) | |
self.rnn1 = nn.GRU(n_rnn, n_rnn, batch_first=True) | |
self.rnn2 = nn.GRU(n_rnn + self.n_aux, n_rnn, batch_first=True) | |
self.relu1 = nn.ReLU(inplace=True) | |
self.relu2 = nn.ReLU(inplace=True) | |
self.fc1 = nn.Linear(n_rnn + self.n_aux, n_fc) | |
self.fc2 = nn.Linear(n_fc + self.n_aux, n_fc) | |
self.fc3 = nn.Linear(n_fc, self.n_classes) | |
def forward(self, waveform: Tensor, specgram: Tensor) -> Tensor: | |
r"""Pass the input through the WaveRNN model. | |
Args: | |
waveform: the input waveform to the WaveRNN layer (n_batch, 1, (n_time - kernel_size + 1) * hop_length) | |
specgram: the input spectrogram to the WaveRNN layer (n_batch, 1, n_freq, n_time) | |
Return: | |
Tensor: shape (n_batch, 1, (n_time - kernel_size + 1) * hop_length, n_classes) | |
""" | |
if waveform.size(1) != 1: | |
raise ValueError("Require the input channel of waveform is 1") | |
if specgram.size(1) != 1: | |
raise ValueError("Require the input channel of specgram is 1") | |
# remove channel dimension until the end | |
waveform, specgram = waveform.squeeze(1), specgram.squeeze(1) | |
batch_size = waveform.size(0) | |
h1 = torch.zeros(1, batch_size, self.n_rnn, dtype=waveform.dtype, device=waveform.device) | |
h2 = torch.zeros(1, batch_size, self.n_rnn, dtype=waveform.dtype, device=waveform.device) | |
# output of upsample: | |
# specgram: (n_batch, n_freq, (n_time - kernel_size + 1) * total_scale) | |
# aux: (n_batch, n_output, (n_time - kernel_size + 1) * total_scale) | |
specgram, aux = self.upsample(specgram) | |
specgram = specgram.transpose(1, 2) | |
aux = aux.transpose(1, 2) | |
aux_idx = [self.n_aux * i for i in range(5)] | |
a1 = aux[:, :, aux_idx[0] : aux_idx[1]] | |
a2 = aux[:, :, aux_idx[1] : aux_idx[2]] | |
a3 = aux[:, :, aux_idx[2] : aux_idx[3]] | |
a4 = aux[:, :, aux_idx[3] : aux_idx[4]] | |
x = torch.cat([waveform.unsqueeze(-1), specgram, a1], dim=-1) | |
x = self.fc(x) | |
res = x | |
x, _ = self.rnn1(x, h1) | |
x = x + res | |
res = x | |
x = torch.cat([x, a2], dim=-1) | |
x, _ = self.rnn2(x, h2) | |
x = x + res | |
x = torch.cat([x, a3], dim=-1) | |
x = self.fc1(x) | |
x = self.relu1(x) | |
x = torch.cat([x, a4], dim=-1) | |
x = self.fc2(x) | |
x = self.relu2(x) | |
x = self.fc3(x) | |
# bring back channel dimension | |
return x.unsqueeze(1) | |
def infer(self, specgram: Tensor, lengths: Optional[Tensor] = None) -> Tuple[Tensor, Optional[Tensor]]: | |
r"""Inference method of WaveRNN. | |
This function currently only supports multinomial sampling, which assumes the | |
network is trained on cross entropy loss. | |
Args: | |
specgram (Tensor): | |
Batch of spectrograms. Shape: `(n_batch, n_freq, n_time)`. | |
lengths (Tensor or None, optional): | |
Indicates the valid length of each audio in the batch. | |
Shape: `(batch, )`. | |
When the ``specgram`` contains spectrograms with different durations, | |
by providing ``lengths`` argument, the model will compute | |
the corresponding valid output lengths. | |
If ``None``, it is assumed that all the audio in ``waveforms`` | |
have valid length. Default: ``None``. | |
Returns: | |
(Tensor, Optional[Tensor]): | |
Tensor | |
The inferred waveform of size `(n_batch, 1, n_time)`. | |
1 stands for a single channel. | |
Tensor or None | |
If ``lengths`` argument was provided, a Tensor of shape `(batch, )` | |
is returned. | |
It indicates the valid length in time axis of the output Tensor. | |
""" | |
device = specgram.device | |
dtype = specgram.dtype | |
specgram = torch.nn.functional.pad(specgram, (self._pad, self._pad)) | |
specgram, aux = self.upsample(specgram) | |
if lengths is not None: | |
lengths = lengths * self.upsample.total_scale | |
output: List[Tensor] = [] | |
b_size, _, seq_len = specgram.size() | |
h1 = torch.zeros((1, b_size, self.n_rnn), device=device, dtype=dtype) | |
h2 = torch.zeros((1, b_size, self.n_rnn), device=device, dtype=dtype) | |
x = torch.zeros((b_size, 1), device=device, dtype=dtype) | |
aux_split = [aux[:, self.n_aux * i : self.n_aux * (i + 1), :] for i in range(4)] | |
for i in range(seq_len): | |
m_t = specgram[:, :, i] | |
a1_t, a2_t, a3_t, a4_t = [a[:, :, i] for a in aux_split] | |
x = torch.cat([x, m_t, a1_t], dim=1) | |
x = self.fc(x) | |
_, h1 = self.rnn1(x.unsqueeze(1), h1) | |
x = x + h1[0] | |
inp = torch.cat([x, a2_t], dim=1) | |
_, h2 = self.rnn2(inp.unsqueeze(1), h2) | |
x = x + h2[0] | |
x = torch.cat([x, a3_t], dim=1) | |
x = F.relu(self.fc1(x)) | |
x = torch.cat([x, a4_t], dim=1) | |
x = F.relu(self.fc2(x)) | |
logits = self.fc3(x) | |
posterior = F.softmax(logits, dim=1) | |
x = torch.multinomial(posterior, 1).float() | |
# Transform label [0, 2 ** n_bits - 1] to waveform [-1, 1] | |
x = 2 * x / (2**self.n_bits - 1.0) - 1.0 | |
output.append(x) | |
return torch.stack(output).permute(1, 2, 0), lengths | |