Spaces:
Running
Running
File size: 15,855 Bytes
864affd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
import math
from typing import List, Optional, Tuple
import torch
import torch.nn.functional as F
from torch import nn, Tensor
__all__ = [
"ResBlock",
"MelResNet",
"Stretch2d",
"UpsampleNetwork",
"WaveRNN",
]
class ResBlock(nn.Module):
r"""ResNet block based on *Efficient Neural Audio Synthesis* :cite:`kalchbrenner2018efficient`.
Args:
n_freq: the number of bins in a spectrogram. (Default: ``128``)
Examples
>>> resblock = ResBlock()
>>> input = torch.rand(10, 128, 512) # a random spectrogram
>>> output = resblock(input) # shape: (10, 128, 512)
"""
def __init__(self, n_freq: int = 128) -> None:
super().__init__()
self.resblock_model = nn.Sequential(
nn.Conv1d(in_channels=n_freq, out_channels=n_freq, kernel_size=1, bias=False),
nn.BatchNorm1d(n_freq),
nn.ReLU(inplace=True),
nn.Conv1d(in_channels=n_freq, out_channels=n_freq, kernel_size=1, bias=False),
nn.BatchNorm1d(n_freq),
)
def forward(self, specgram: Tensor) -> Tensor:
r"""Pass the input through the ResBlock layer.
Args:
specgram (Tensor): the input sequence to the ResBlock layer (n_batch, n_freq, n_time).
Return:
Tensor shape: (n_batch, n_freq, n_time)
"""
return self.resblock_model(specgram) + specgram
class MelResNet(nn.Module):
r"""MelResNet layer uses a stack of ResBlocks on spectrogram.
Args:
n_res_block: the number of ResBlock in stack. (Default: ``10``)
n_freq: the number of bins in a spectrogram. (Default: ``128``)
n_hidden: the number of hidden dimensions of resblock. (Default: ``128``)
n_output: the number of output dimensions of melresnet. (Default: ``128``)
kernel_size: the number of kernel size in the first Conv1d layer. (Default: ``5``)
Examples
>>> melresnet = MelResNet()
>>> input = torch.rand(10, 128, 512) # a random spectrogram
>>> output = melresnet(input) # shape: (10, 128, 508)
"""
def __init__(
self, n_res_block: int = 10, n_freq: int = 128, n_hidden: int = 128, n_output: int = 128, kernel_size: int = 5
) -> None:
super().__init__()
ResBlocks = [ResBlock(n_hidden) for _ in range(n_res_block)]
self.melresnet_model = nn.Sequential(
nn.Conv1d(in_channels=n_freq, out_channels=n_hidden, kernel_size=kernel_size, bias=False),
nn.BatchNorm1d(n_hidden),
nn.ReLU(inplace=True),
*ResBlocks,
nn.Conv1d(in_channels=n_hidden, out_channels=n_output, kernel_size=1),
)
def forward(self, specgram: Tensor) -> Tensor:
r"""Pass the input through the MelResNet layer.
Args:
specgram (Tensor): the input sequence to the MelResNet layer (n_batch, n_freq, n_time).
Return:
Tensor shape: (n_batch, n_output, n_time - kernel_size + 1)
"""
return self.melresnet_model(specgram)
class Stretch2d(nn.Module):
r"""Upscale the frequency and time dimensions of a spectrogram.
Args:
time_scale: the scale factor in time dimension
freq_scale: the scale factor in frequency dimension
Examples
>>> stretch2d = Stretch2d(time_scale=10, freq_scale=5)
>>> input = torch.rand(10, 100, 512) # a random spectrogram
>>> output = stretch2d(input) # shape: (10, 500, 5120)
"""
def __init__(self, time_scale: int, freq_scale: int) -> None:
super().__init__()
self.freq_scale = freq_scale
self.time_scale = time_scale
def forward(self, specgram: Tensor) -> Tensor:
r"""Pass the input through the Stretch2d layer.
Args:
specgram (Tensor): the input sequence to the Stretch2d layer (..., n_freq, n_time).
Return:
Tensor shape: (..., n_freq * freq_scale, n_time * time_scale)
"""
return specgram.repeat_interleave(self.freq_scale, -2).repeat_interleave(self.time_scale, -1)
class UpsampleNetwork(nn.Module):
r"""Upscale the dimensions of a spectrogram.
Args:
upsample_scales: the list of upsample scales.
n_res_block: the number of ResBlock in stack. (Default: ``10``)
n_freq: the number of bins in a spectrogram. (Default: ``128``)
n_hidden: the number of hidden dimensions of resblock. (Default: ``128``)
n_output: the number of output dimensions of melresnet. (Default: ``128``)
kernel_size: the number of kernel size in the first Conv1d layer. (Default: ``5``)
Examples
>>> upsamplenetwork = UpsampleNetwork(upsample_scales=[4, 4, 16])
>>> input = torch.rand(10, 128, 10) # a random spectrogram
>>> output = upsamplenetwork(input) # shape: (10, 128, 1536), (10, 128, 1536)
"""
def __init__(
self,
upsample_scales: List[int],
n_res_block: int = 10,
n_freq: int = 128,
n_hidden: int = 128,
n_output: int = 128,
kernel_size: int = 5,
) -> None:
super().__init__()
total_scale = 1
for upsample_scale in upsample_scales:
total_scale *= upsample_scale
self.total_scale: int = total_scale
self.indent = (kernel_size - 1) // 2 * total_scale
self.resnet = MelResNet(n_res_block, n_freq, n_hidden, n_output, kernel_size)
self.resnet_stretch = Stretch2d(total_scale, 1)
up_layers = []
for scale in upsample_scales:
stretch = Stretch2d(scale, 1)
conv = nn.Conv2d(
in_channels=1, out_channels=1, kernel_size=(1, scale * 2 + 1), padding=(0, scale), bias=False
)
torch.nn.init.constant_(conv.weight, 1.0 / (scale * 2 + 1))
up_layers.append(stretch)
up_layers.append(conv)
self.upsample_layers = nn.Sequential(*up_layers)
def forward(self, specgram: Tensor) -> Tuple[Tensor, Tensor]:
r"""Pass the input through the UpsampleNetwork layer.
Args:
specgram (Tensor): the input sequence to the UpsampleNetwork layer (n_batch, n_freq, n_time)
Return:
Tensor shape: (n_batch, n_freq, (n_time - kernel_size + 1) * total_scale),
(n_batch, n_output, (n_time - kernel_size + 1) * total_scale)
where total_scale is the product of all elements in upsample_scales.
"""
resnet_output = self.resnet(specgram).unsqueeze(1)
resnet_output = self.resnet_stretch(resnet_output)
resnet_output = resnet_output.squeeze(1)
specgram = specgram.unsqueeze(1)
upsampling_output = self.upsample_layers(specgram)
upsampling_output = upsampling_output.squeeze(1)[:, :, self.indent : -self.indent]
return upsampling_output, resnet_output
class WaveRNN(nn.Module):
r"""WaveRNN model from *Efficient Neural Audio Synthesis* :cite:`wavernn`
based on the implementation from `fatchord/WaveRNN <https://github.com/fatchord/WaveRNN>`_.
The original implementation was introduced in *Efficient Neural Audio Synthesis*
:cite:`kalchbrenner2018efficient`. The input channels of waveform and spectrogram have to be 1.
The product of `upsample_scales` must equal `hop_length`.
See Also:
* `Training example <https://github.com/pytorch/audio/tree/release/0.12/examples/pipeline_wavernn>`__
* :class:`torchaudio.pipelines.Tacotron2TTSBundle`: TTS pipeline with pretrained model.
Args:
upsample_scales: the list of upsample scales.
n_classes: the number of output classes.
hop_length: the number of samples between the starts of consecutive frames.
n_res_block: the number of ResBlock in stack. (Default: ``10``)
n_rnn: the dimension of RNN layer. (Default: ``512``)
n_fc: the dimension of fully connected layer. (Default: ``512``)
kernel_size: the number of kernel size in the first Conv1d layer. (Default: ``5``)
n_freq: the number of bins in a spectrogram. (Default: ``128``)
n_hidden: the number of hidden dimensions of resblock. (Default: ``128``)
n_output: the number of output dimensions of melresnet. (Default: ``128``)
Example
>>> wavernn = WaveRNN(upsample_scales=[5,5,8], n_classes=512, hop_length=200)
>>> waveform, sample_rate = torchaudio.load(file)
>>> # waveform shape: (n_batch, n_channel, (n_time - kernel_size + 1) * hop_length)
>>> specgram = MelSpectrogram(sample_rate)(waveform) # shape: (n_batch, n_channel, n_freq, n_time)
>>> output = wavernn(waveform, specgram)
>>> # output shape: (n_batch, n_channel, (n_time - kernel_size + 1) * hop_length, n_classes)
"""
def __init__(
self,
upsample_scales: List[int],
n_classes: int,
hop_length: int,
n_res_block: int = 10,
n_rnn: int = 512,
n_fc: int = 512,
kernel_size: int = 5,
n_freq: int = 128,
n_hidden: int = 128,
n_output: int = 128,
) -> None:
super().__init__()
self.kernel_size = kernel_size
self._pad = (kernel_size - 1 if kernel_size % 2 else kernel_size) // 2
self.n_rnn = n_rnn
self.n_aux = n_output // 4
self.hop_length = hop_length
self.n_classes = n_classes
self.n_bits: int = int(math.log2(self.n_classes))
total_scale = 1
for upsample_scale in upsample_scales:
total_scale *= upsample_scale
if total_scale != self.hop_length:
raise ValueError(f"Expected: total_scale == hop_length, but found {total_scale} != {hop_length}")
self.upsample = UpsampleNetwork(upsample_scales, n_res_block, n_freq, n_hidden, n_output, kernel_size)
self.fc = nn.Linear(n_freq + self.n_aux + 1, n_rnn)
self.rnn1 = nn.GRU(n_rnn, n_rnn, batch_first=True)
self.rnn2 = nn.GRU(n_rnn + self.n_aux, n_rnn, batch_first=True)
self.relu1 = nn.ReLU(inplace=True)
self.relu2 = nn.ReLU(inplace=True)
self.fc1 = nn.Linear(n_rnn + self.n_aux, n_fc)
self.fc2 = nn.Linear(n_fc + self.n_aux, n_fc)
self.fc3 = nn.Linear(n_fc, self.n_classes)
def forward(self, waveform: Tensor, specgram: Tensor) -> Tensor:
r"""Pass the input through the WaveRNN model.
Args:
waveform: the input waveform to the WaveRNN layer (n_batch, 1, (n_time - kernel_size + 1) * hop_length)
specgram: the input spectrogram to the WaveRNN layer (n_batch, 1, n_freq, n_time)
Return:
Tensor: shape (n_batch, 1, (n_time - kernel_size + 1) * hop_length, n_classes)
"""
if waveform.size(1) != 1:
raise ValueError("Require the input channel of waveform is 1")
if specgram.size(1) != 1:
raise ValueError("Require the input channel of specgram is 1")
# remove channel dimension until the end
waveform, specgram = waveform.squeeze(1), specgram.squeeze(1)
batch_size = waveform.size(0)
h1 = torch.zeros(1, batch_size, self.n_rnn, dtype=waveform.dtype, device=waveform.device)
h2 = torch.zeros(1, batch_size, self.n_rnn, dtype=waveform.dtype, device=waveform.device)
# output of upsample:
# specgram: (n_batch, n_freq, (n_time - kernel_size + 1) * total_scale)
# aux: (n_batch, n_output, (n_time - kernel_size + 1) * total_scale)
specgram, aux = self.upsample(specgram)
specgram = specgram.transpose(1, 2)
aux = aux.transpose(1, 2)
aux_idx = [self.n_aux * i for i in range(5)]
a1 = aux[:, :, aux_idx[0] : aux_idx[1]]
a2 = aux[:, :, aux_idx[1] : aux_idx[2]]
a3 = aux[:, :, aux_idx[2] : aux_idx[3]]
a4 = aux[:, :, aux_idx[3] : aux_idx[4]]
x = torch.cat([waveform.unsqueeze(-1), specgram, a1], dim=-1)
x = self.fc(x)
res = x
x, _ = self.rnn1(x, h1)
x = x + res
res = x
x = torch.cat([x, a2], dim=-1)
x, _ = self.rnn2(x, h2)
x = x + res
x = torch.cat([x, a3], dim=-1)
x = self.fc1(x)
x = self.relu1(x)
x = torch.cat([x, a4], dim=-1)
x = self.fc2(x)
x = self.relu2(x)
x = self.fc3(x)
# bring back channel dimension
return x.unsqueeze(1)
@torch.jit.export
def infer(self, specgram: Tensor, lengths: Optional[Tensor] = None) -> Tuple[Tensor, Optional[Tensor]]:
r"""Inference method of WaveRNN.
This function currently only supports multinomial sampling, which assumes the
network is trained on cross entropy loss.
Args:
specgram (Tensor):
Batch of spectrograms. Shape: `(n_batch, n_freq, n_time)`.
lengths (Tensor or None, optional):
Indicates the valid length of each audio in the batch.
Shape: `(batch, )`.
When the ``specgram`` contains spectrograms with different durations,
by providing ``lengths`` argument, the model will compute
the corresponding valid output lengths.
If ``None``, it is assumed that all the audio in ``waveforms``
have valid length. Default: ``None``.
Returns:
(Tensor, Optional[Tensor]):
Tensor
The inferred waveform of size `(n_batch, 1, n_time)`.
1 stands for a single channel.
Tensor or None
If ``lengths`` argument was provided, a Tensor of shape `(batch, )`
is returned.
It indicates the valid length in time axis of the output Tensor.
"""
device = specgram.device
dtype = specgram.dtype
specgram = torch.nn.functional.pad(specgram, (self._pad, self._pad))
specgram, aux = self.upsample(specgram)
if lengths is not None:
lengths = lengths * self.upsample.total_scale
output: List[Tensor] = []
b_size, _, seq_len = specgram.size()
h1 = torch.zeros((1, b_size, self.n_rnn), device=device, dtype=dtype)
h2 = torch.zeros((1, b_size, self.n_rnn), device=device, dtype=dtype)
x = torch.zeros((b_size, 1), device=device, dtype=dtype)
aux_split = [aux[:, self.n_aux * i : self.n_aux * (i + 1), :] for i in range(4)]
for i in range(seq_len):
m_t = specgram[:, :, i]
a1_t, a2_t, a3_t, a4_t = [a[:, :, i] for a in aux_split]
x = torch.cat([x, m_t, a1_t], dim=1)
x = self.fc(x)
_, h1 = self.rnn1(x.unsqueeze(1), h1)
x = x + h1[0]
inp = torch.cat([x, a2_t], dim=1)
_, h2 = self.rnn2(inp.unsqueeze(1), h2)
x = x + h2[0]
x = torch.cat([x, a3_t], dim=1)
x = F.relu(self.fc1(x))
x = torch.cat([x, a4_t], dim=1)
x = F.relu(self.fc2(x))
logits = self.fc3(x)
posterior = F.softmax(logits, dim=1)
x = torch.multinomial(posterior, 1).float()
# Transform label [0, 2 ** n_bits - 1] to waveform [-1, 1]
x = 2 * x / (2**self.n_bits - 1.0) - 1.0
output.append(x)
return torch.stack(output).permute(1, 2, 0), lengths
|