Spaces:
Running
Running
from sympy.core.numbers import Rational | |
from sympy.core.relational import Eq, Ne | |
from sympy.core.symbol import symbols | |
from sympy.core.sympify import sympify | |
from sympy.core.singleton import S | |
from sympy.core.random import random, choice | |
from sympy.functions.elementary.miscellaneous import sqrt | |
from sympy.ntheory.generate import randprime | |
from sympy.matrices.dense import Matrix | |
from sympy.solvers.solveset import linear_eq_to_matrix | |
from sympy.solvers.simplex import (_lp as lp, _primal_dual, | |
UnboundedLPError, InfeasibleLPError, lpmin, lpmax, | |
_m, _abcd, _simplex, linprog) | |
from sympy.external.importtools import import_module | |
from sympy.testing.pytest import raises | |
from sympy.abc import x, y, z | |
np = import_module("numpy") | |
scipy = import_module("scipy") | |
def test_lp(): | |
r1 = y + 2*z <= 3 | |
r2 = -x - 3*z <= -2 | |
r3 = 2*x + y + 7*z <= 5 | |
constraints = [r1, r2, r3, x >= 0, y >= 0, z >= 0] | |
objective = -x - y - 5 * z | |
ans = optimum, argmax = lp(max, objective, constraints) | |
assert ans == lpmax(objective, constraints) | |
assert objective.subs(argmax) == optimum | |
for constr in constraints: | |
assert constr.subs(argmax) == True | |
r1 = x - y + 2*z <= 3 | |
r2 = -x + 2*y - 3*z <= -2 | |
r3 = 2*x + y - 7*z <= -5 | |
constraints = [r1, r2, r3, x >= 0, y >= 0, z >= 0] | |
objective = -x - y - 5*z | |
ans = optimum, argmax = lp(max, objective, constraints) | |
assert ans == lpmax(objective, constraints) | |
assert objective.subs(argmax) == optimum | |
for constr in constraints: | |
assert constr.subs(argmax) == True | |
r1 = x - y + 2*z <= -4 | |
r2 = -x + 2*y - 3*z <= 8 | |
r3 = 2*x + y - 7*z <= 10 | |
constraints = [r1, r2, r3, x >= 0, y >= 0, z >= 0] | |
const = 2 | |
objective = -x-y-5*z+const # has constant term | |
ans = optimum, argmax = lp(max, objective, constraints) | |
assert ans == lpmax(objective, constraints) | |
assert objective.subs(argmax) == optimum | |
for constr in constraints: | |
assert constr.subs(argmax) == True | |
# Section 4 Problem 1 from | |
# http://web.tecnico.ulisboa.pt/mcasquilho/acad/or/ftp/FergusonUCLA_LP.pdf | |
# answer on page 55 | |
v = x1, x2, x3, x4 = symbols('x1 x2 x3 x4') | |
r1 = x1 - x2 - 2*x3 - x4 <= 4 | |
r2 = 2*x1 + x3 -4*x4 <= 2 | |
r3 = -2*x1 + x2 + x4 <= 1 | |
objective, constraints = x1 - 2*x2 - 3*x3 - x4, [r1, r2, r3] + [ | |
i >= 0 for i in v] | |
ans = optimum, argmax = lp(max, objective, constraints) | |
assert ans == lpmax(objective, constraints) | |
assert ans == (4, {x1: 7, x2: 0, x3: 0, x4: 3}) | |
# input contains Floats | |
r1 = x - y + 2.0*z <= -4 | |
r2 = -x + 2*y - 3.0*z <= 8 | |
r3 = 2*x + y - 7*z <= 10 | |
constraints = [r1, r2, r3] + [i >= 0 for i in (x, y, z)] | |
objective = -x-y-5*z | |
optimum, argmax = lp(max, objective, constraints) | |
assert objective.subs(argmax) == optimum | |
for constr in constraints: | |
assert constr.subs(argmax) == True | |
# input contains non-float or non-Rational | |
r1 = x - y + sqrt(2) * z <= -4 | |
r2 = -x + 2*y - 3*z <= 8 | |
r3 = 2*x + y - 7*z <= 10 | |
raises(TypeError, lambda: lp(max, -x-y-5*z, [r1, r2, r3])) | |
r1 = x >= 0 | |
raises(UnboundedLPError, lambda: lp(max, x, [r1])) | |
r2 = x <= -1 | |
raises(InfeasibleLPError, lambda: lp(max, x, [r1, r2])) | |
# strict inequalities are not allowed | |
r1 = x > 0 | |
raises(TypeError, lambda: lp(max, x, [r1])) | |
# not equals not allowed | |
r1 = Ne(x, 0) | |
raises(TypeError, lambda: lp(max, x, [r1])) | |
def make_random_problem(nvar=2, num_constraints=2, sparsity=.1): | |
def rand(): | |
if random() < sparsity: | |
return sympify(0) | |
int1, int2 = [randprime(0, 200) for _ in range(2)] | |
return Rational(int1, int2)*choice([-1, 1]) | |
variables = symbols('x1:%s' % (nvar + 1)) | |
constraints = [(sum(rand()*x for x in variables) <= rand()) | |
for _ in range(num_constraints)] | |
objective = sum(rand() * x for x in variables) | |
return objective, constraints, variables | |
# equality | |
r1 = Eq(x, y) | |
r2 = Eq(y, z) | |
r3 = z <= 3 | |
constraints = [r1, r2, r3] | |
objective = x | |
ans = optimum, argmax = lp(max, objective, constraints) | |
assert ans == lpmax(objective, constraints) | |
assert objective.subs(argmax) == optimum | |
for constr in constraints: | |
assert constr.subs(argmax) == True | |
def test_simplex(): | |
L = [ | |
[[1, 1], [-1, 1], [0, 1], [-1, 0]], | |
[5, 1, 2, -1], | |
[[1, 1]], | |
[-1]] | |
A, B, C, D = _abcd(_m(*L), list=False) | |
assert _simplex(A, B, -C, -D) == (-6, [3, 2], [1, 0, 0, 0]) | |
assert _simplex(A, B, -C, -D, dual=True) == (-6, | |
[1, 0, 0, 0], [5, 0]) | |
assert _simplex([[]],[],[[1]],[0]) == (0, [0], []) | |
# handling of Eq (or Eq-like x<=y, x>=y conditions) | |
assert lpmax(x - y, [x <= y + 2, x >= y + 2, x >= 0, y >= 0] | |
) == (2, {x: 2, y: 0}) | |
assert lpmax(x - y, [x <= y + 2, Eq(x, y + 2), x >= 0, y >= 0] | |
) == (2, {x: 2, y: 0}) | |
assert lpmax(x - y, [x <= y + 2, Eq(x, 2)]) == (2, {x: 2, y: 0}) | |
assert lpmax(y, [Eq(y, 2)]) == (2, {y: 2}) | |
# the conditions are equivalent to Eq(x, y + 2) | |
assert lpmin(y, [x <= y + 2, x >= y + 2, y >= 0] | |
) == (0, {x: 2, y: 0}) | |
# equivalent to Eq(y, -2) | |
assert lpmax(y, [0 <= y + 2, 0 >= y + 2]) == (-2, {y: -2}) | |
assert lpmax(y, [0 <= y + 2, 0 >= y + 2, y <= 0] | |
) == (-2, {y: -2}) | |
# extra symbols symbols | |
assert lpmin(x, [y >= 1, x >= y]) == (1, {x: 1, y: 1}) | |
assert lpmin(x, [y >= 1, x >= y + z, x >= 0, z >= 0] | |
) == (1, {x: 1, y: 1, z: 0}) | |
# detect oscillation | |
# o1 | |
v = x1, x2, x3, x4 = symbols('x1 x2 x3 x4') | |
raises(InfeasibleLPError, lambda: lpmin( | |
9*x2 - 8*x3 + 3*x4 + 6, | |
[5*x2 - 2*x3 <= 0, | |
-x1 - 8*x2 + 9*x3 <= -3, | |
10*x1 - x2+ 9*x4 <= -4] + [i >= 0 for i in v])) | |
# o2 - equations fed to lpmin are changed into a matrix | |
# system that doesn't oscillate and has the same solution | |
# as below | |
M = linear_eq_to_matrix | |
f = 5*x2 + x3 + 4*x4 - x1 | |
L = 5*x2 + 2*x3 + 5*x4 - (x1 + 5) | |
cond = [L <= 0] + [Eq(3*x2 + x4, 2), Eq(-x1 + x3 + 2*x4, 1)] | |
c, d = M(f, v) | |
a, b = M(L, v) | |
aeq, beq = M(cond[1:], v) | |
ans = (S(9)/2, [0, S(1)/2, 0, S(1)/2]) | |
assert linprog(c, a, b, aeq, beq, bounds=(0, 1)) == ans | |
lpans = lpmin(f, cond + [x1 >= 0, x1 <= 1, | |
x2 >= 0, x2 <= 1, x3 >= 0, x3 <= 1, x4 >= 0, x4 <= 1]) | |
assert (lpans[0], list(lpans[1].values())) == ans | |
def test_lpmin_lpmax(): | |
v = x1, x2, y1, y2 = symbols('x1 x2 y1 y2') | |
L = [[1, -1]], [1], [[1, 1]], [2] | |
a, b, c, d = [Matrix(i) for i in L] | |
m = Matrix([[a, b], [c, d]]) | |
f, constr = _primal_dual(m)[0] | |
ans = lpmin(f, constr + [i >= 0 for i in v[:2]]) | |
assert ans == (-1, {x1: 1, x2: 0}),ans | |
L = [[1, -1], [1, 1]], [1, 1], [[1, 1]], [2] | |
a, b, c, d = [Matrix(i) for i in L] | |
m = Matrix([[a, b], [c, d]]) | |
f, constr = _primal_dual(m)[1] | |
ans = lpmax(f, constr + [i >= 0 for i in v[-2:]]) | |
assert ans == (-1, {y1: 1, y2: 0}) | |
def test_linprog(): | |
for do in range(2): | |
if not do: | |
M = lambda a, b: linear_eq_to_matrix(a, b) | |
else: | |
# check matrices as list | |
M = lambda a, b: tuple([ | |
i.tolist() for i in linear_eq_to_matrix(a, b)]) | |
v = x, y, z = symbols('x1:4') | |
f = x + y - 2*z | |
c = M(f, v)[0] | |
ineq = [7*x + 4*y - 7*z <= 3, | |
3*x - y + 10*z <= 6, | |
x >= 0, y >= 0, z >= 0] | |
ab = M([i.lts - i.gts for i in ineq], v) | |
ans = (-S(6)/5, [0, 0, S(3)/5]) | |
assert lpmin(f, ineq) == (ans[0], dict(zip(v, ans[1]))) | |
assert linprog(c, *ab) == ans | |
f += 1 | |
c = M(f, v)[0] | |
eq = [Eq(y - 9*x, 1)] | |
abeq = M([i.lhs - i.rhs for i in eq], v) | |
ans = (1 - S(2)/5, [0, 1, S(7)/10]) | |
assert lpmin(f, ineq + eq) == (ans[0], dict(zip(v, ans[1]))) | |
assert linprog(c, *ab, *abeq) == (ans[0] - 1, ans[1]) | |
eq = [z - y <= S.Half] | |
abeq = M([i.lhs - i.rhs for i in eq], v) | |
ans = (1 - S(10)/9, [0, S(1)/9, S(11)/18]) | |
assert lpmin(f, ineq + eq) == (ans[0], dict(zip(v, ans[1]))) | |
assert linprog(c, *ab, *abeq) == (ans[0] - 1, ans[1]) | |
bounds = [(0, None), (0, None), (None, S.Half)] | |
ans = (0, [0, 0, S.Half]) | |
assert lpmin(f, ineq + [z <= S.Half]) == ( | |
ans[0], dict(zip(v, ans[1]))) | |
assert linprog(c, *ab, bounds=bounds) == (ans[0] - 1, ans[1]) | |
assert linprog(c, *ab, bounds={v.index(z): bounds[-1]} | |
) == (ans[0] - 1, ans[1]) | |
eq = [z - y <= S.Half] | |
assert linprog([[1]], [], [], bounds=(2, 3)) == (2, [2]) | |
assert linprog([1], [], [], bounds=(2, 3)) == (2, [2]) | |
assert linprog([1], bounds=(2, 3)) == (2, [2]) | |
assert linprog([1, -1], [[1, 1]], [2], bounds={1:(None, None)} | |
) == (-2, [0, 2]) | |
assert linprog([1, -1], [[1, 1]], [5], bounds={1:(3, None)} | |
) == (-5, [0, 5]) | |