File size: 9,037 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
from sympy.core.numbers import Rational
from sympy.core.relational import Eq, Ne
from sympy.core.symbol import symbols
from sympy.core.sympify import sympify
from sympy.core.singleton import S
from sympy.core.random import random, choice
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.ntheory.generate import randprime
from sympy.matrices.dense import Matrix
from sympy.solvers.solveset import linear_eq_to_matrix
from sympy.solvers.simplex import (_lp as lp, _primal_dual,
    UnboundedLPError, InfeasibleLPError, lpmin, lpmax,
    _m, _abcd, _simplex, linprog)

from sympy.external.importtools import import_module

from sympy.testing.pytest import raises

from sympy.abc import x, y, z


np = import_module("numpy")
scipy = import_module("scipy")


def test_lp():
    r1 = y + 2*z <= 3
    r2 = -x - 3*z <= -2
    r3 = 2*x + y + 7*z <= 5
    constraints = [r1, r2, r3, x >= 0, y >= 0, z >= 0]
    objective = -x - y - 5 * z
    ans = optimum, argmax = lp(max, objective, constraints)
    assert ans == lpmax(objective, constraints)
    assert objective.subs(argmax) == optimum
    for constr in constraints:
        assert constr.subs(argmax) == True

    r1 = x - y + 2*z <= 3
    r2 = -x + 2*y - 3*z <= -2
    r3 = 2*x + y - 7*z <= -5
    constraints = [r1, r2, r3, x >= 0, y >= 0, z >= 0]
    objective = -x - y - 5*z
    ans = optimum, argmax = lp(max, objective, constraints)
    assert ans == lpmax(objective, constraints)
    assert objective.subs(argmax) == optimum
    for constr in constraints:
        assert constr.subs(argmax) == True

    r1 = x - y + 2*z <= -4
    r2 = -x + 2*y - 3*z <= 8
    r3 = 2*x + y - 7*z <= 10
    constraints = [r1, r2, r3, x >= 0, y >= 0, z >= 0]
    const = 2
    objective = -x-y-5*z+const # has constant term
    ans = optimum, argmax = lp(max, objective, constraints)
    assert ans == lpmax(objective, constraints)
    assert objective.subs(argmax) == optimum
    for constr in constraints:
        assert constr.subs(argmax) == True

    # Section 4 Problem 1 from
    # http://web.tecnico.ulisboa.pt/mcasquilho/acad/or/ftp/FergusonUCLA_LP.pdf
    # answer on page 55
    v = x1, x2, x3, x4 = symbols('x1 x2 x3 x4')
    r1 = x1 - x2 - 2*x3 - x4 <= 4
    r2 = 2*x1 + x3 -4*x4 <= 2
    r3 = -2*x1 + x2 + x4 <= 1
    objective, constraints = x1 - 2*x2 - 3*x3 - x4, [r1, r2, r3] + [
        i >= 0 for i in v]
    ans = optimum, argmax = lp(max, objective, constraints)
    assert ans == lpmax(objective, constraints)
    assert ans == (4, {x1: 7, x2: 0, x3: 0, x4: 3})

    # input contains Floats
    r1 = x - y + 2.0*z <= -4
    r2 = -x + 2*y - 3.0*z <= 8
    r3 = 2*x + y - 7*z <= 10
    constraints = [r1, r2, r3] + [i >= 0 for i in (x, y, z)]
    objective = -x-y-5*z
    optimum, argmax = lp(max, objective, constraints)
    assert objective.subs(argmax) == optimum
    for constr in constraints:
        assert constr.subs(argmax) == True

    # input contains non-float or non-Rational
    r1 = x - y + sqrt(2) * z <= -4
    r2 = -x + 2*y - 3*z <= 8
    r3 = 2*x + y - 7*z <= 10
    raises(TypeError, lambda: lp(max, -x-y-5*z, [r1, r2, r3]))

    r1 = x >= 0
    raises(UnboundedLPError, lambda: lp(max, x, [r1]))
    r2 = x <= -1
    raises(InfeasibleLPError, lambda: lp(max, x, [r1, r2]))

    # strict inequalities are not allowed
    r1 = x > 0
    raises(TypeError, lambda: lp(max, x, [r1]))

    # not equals not allowed
    r1 = Ne(x, 0)
    raises(TypeError, lambda: lp(max, x, [r1]))

    def make_random_problem(nvar=2, num_constraints=2, sparsity=.1):
        def rand():
            if random() < sparsity:
                return sympify(0)
            int1, int2 = [randprime(0, 200) for _ in range(2)]
            return Rational(int1, int2)*choice([-1, 1])
        variables = symbols('x1:%s' % (nvar + 1))
        constraints = [(sum(rand()*x for x in variables) <= rand())
                       for _ in range(num_constraints)]
        objective = sum(rand() * x for x in variables)
        return objective, constraints, variables

    # equality
    r1 = Eq(x, y)
    r2 = Eq(y, z)
    r3 = z <= 3
    constraints = [r1, r2, r3]
    objective = x
    ans = optimum, argmax = lp(max, objective, constraints)
    assert ans == lpmax(objective, constraints)
    assert objective.subs(argmax) == optimum
    for constr in constraints:
        assert constr.subs(argmax) == True


def test_simplex():
    L = [
        [[1, 1], [-1, 1], [0, 1], [-1, 0]],
        [5, 1, 2, -1],
        [[1, 1]],
        [-1]]
    A, B, C, D = _abcd(_m(*L), list=False)
    assert _simplex(A, B, -C, -D) == (-6, [3, 2], [1, 0, 0, 0])
    assert _simplex(A, B, -C, -D, dual=True) == (-6,
        [1, 0, 0, 0], [5, 0])

    assert _simplex([[]],[],[[1]],[0]) == (0, [0], [])

    # handling of Eq (or Eq-like x<=y, x>=y conditions)
    assert lpmax(x - y, [x <= y + 2, x >= y + 2, x >= 0, y >= 0]
        ) == (2, {x: 2, y: 0})
    assert lpmax(x - y, [x <= y + 2, Eq(x, y + 2), x >= 0, y >= 0]
        ) == (2, {x: 2, y: 0})
    assert lpmax(x - y, [x <= y + 2, Eq(x, 2)]) == (2, {x: 2, y: 0})
    assert lpmax(y, [Eq(y, 2)]) == (2, {y: 2})

    # the conditions are equivalent to Eq(x, y + 2)
    assert lpmin(y, [x <= y + 2, x >= y + 2, y >= 0]
        ) == (0, {x: 2, y: 0})
    # equivalent to Eq(y, -2)
    assert lpmax(y, [0 <= y + 2, 0 >= y + 2]) == (-2, {y: -2})
    assert lpmax(y, [0 <= y + 2, 0 >= y + 2, y <= 0]
        ) == (-2, {y: -2})

    # extra symbols symbols
    assert lpmin(x, [y >= 1, x >= y]) == (1, {x: 1, y: 1})
    assert lpmin(x, [y >= 1, x >= y + z, x >= 0, z >= 0]
        ) == (1, {x: 1, y: 1, z: 0})

    # detect oscillation
    # o1
    v = x1, x2, x3, x4 = symbols('x1 x2 x3 x4')
    raises(InfeasibleLPError, lambda: lpmin(
        9*x2 - 8*x3 + 3*x4 + 6,
        [5*x2 - 2*x3 <= 0,
        -x1 - 8*x2 + 9*x3 <= -3,
        10*x1 - x2+ 9*x4 <= -4] + [i >= 0 for i in v]))
    # o2 - equations fed to lpmin are changed into a matrix
    # system that doesn't oscillate and has the same solution
    # as below
    M = linear_eq_to_matrix
    f = 5*x2 + x3 + 4*x4 - x1
    L = 5*x2 + 2*x3 + 5*x4 - (x1 + 5)
    cond = [L <= 0] + [Eq(3*x2 + x4, 2), Eq(-x1 + x3 + 2*x4, 1)]
    c, d = M(f, v)
    a, b = M(L, v)
    aeq, beq = M(cond[1:], v)
    ans = (S(9)/2, [0, S(1)/2, 0, S(1)/2])
    assert linprog(c, a, b, aeq, beq, bounds=(0, 1)) == ans
    lpans = lpmin(f, cond + [x1 >= 0, x1 <= 1,
        x2 >= 0, x2 <= 1, x3 >= 0, x3 <= 1, x4 >= 0, x4 <= 1])
    assert (lpans[0], list(lpans[1].values())) == ans


def test_lpmin_lpmax():
    v = x1, x2, y1, y2 = symbols('x1 x2 y1 y2')
    L = [[1, -1]], [1], [[1, 1]], [2]
    a, b, c, d = [Matrix(i) for i in L]
    m = Matrix([[a, b], [c, d]])
    f, constr = _primal_dual(m)[0]
    ans = lpmin(f, constr + [i >= 0 for i in v[:2]])
    assert ans == (-1, {x1: 1, x2: 0}),ans

    L = [[1, -1], [1, 1]], [1, 1], [[1, 1]], [2]
    a, b, c, d = [Matrix(i) for i in L]
    m = Matrix([[a, b], [c, d]])
    f, constr = _primal_dual(m)[1]
    ans = lpmax(f, constr + [i >= 0 for i in v[-2:]])
    assert ans == (-1, {y1: 1, y2: 0})


def test_linprog():
    for do in range(2):
        if not do:
            M = lambda a, b: linear_eq_to_matrix(a, b)
        else:
            # check matrices as list
            M = lambda a, b: tuple([
                i.tolist() for i in linear_eq_to_matrix(a, b)])

        v = x, y, z = symbols('x1:4')
        f = x + y - 2*z
        c = M(f, v)[0]
        ineq = [7*x + 4*y - 7*z <= 3,
            3*x - y + 10*z <= 6,
            x >= 0, y >= 0, z >= 0]
        ab = M([i.lts - i.gts for i in ineq], v)
        ans = (-S(6)/5, [0, 0, S(3)/5])
        assert lpmin(f, ineq) == (ans[0], dict(zip(v, ans[1])))
        assert linprog(c, *ab) == ans

        f += 1
        c = M(f, v)[0]
        eq = [Eq(y - 9*x, 1)]
        abeq = M([i.lhs - i.rhs for i in eq], v)
        ans = (1 - S(2)/5, [0, 1, S(7)/10])
        assert lpmin(f, ineq + eq) == (ans[0], dict(zip(v, ans[1])))
        assert linprog(c, *ab, *abeq) == (ans[0] - 1, ans[1])

        eq = [z - y <= S.Half]
        abeq = M([i.lhs - i.rhs for i in eq], v)
        ans = (1 - S(10)/9, [0, S(1)/9, S(11)/18])
        assert lpmin(f, ineq + eq) == (ans[0], dict(zip(v, ans[1])))
        assert linprog(c, *ab, *abeq) == (ans[0] - 1, ans[1])

        bounds = [(0, None), (0, None), (None, S.Half)]
        ans = (0, [0, 0, S.Half])
        assert lpmin(f, ineq + [z <= S.Half]) == (
            ans[0], dict(zip(v, ans[1])))
        assert linprog(c, *ab, bounds=bounds) == (ans[0] - 1, ans[1])
        assert linprog(c, *ab, bounds={v.index(z): bounds[-1]}
            ) == (ans[0] - 1, ans[1])
        eq = [z - y <= S.Half]

    assert linprog([[1]], [], [], bounds=(2, 3)) == (2, [2])
    assert linprog([1], [], [], bounds=(2, 3)) == (2, [2])
    assert linprog([1], bounds=(2, 3)) == (2, [2])
    assert linprog([1, -1], [[1, 1]], [2], bounds={1:(None, None)}
        ) == (-2, [0, 2])
    assert linprog([1, -1], [[1, 1]], [5], bounds={1:(3, None)}
        ) == (-5, [0, 5])