Spaces:
Running
Running
import random | |
from sympy.core.function import Derivative | |
from sympy.core.symbol import symbols | |
from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct, ArrayAdd, \ | |
PermuteDims, ArrayDiagonal | |
from sympy.core.relational import Eq, Ne, Ge, Gt, Le, Lt | |
from sympy.external import import_module | |
from sympy.functions import \ | |
Abs, ceiling, exp, floor, sign, sin, asin, sqrt, cos, \ | |
acos, tan, atan, atan2, cosh, acosh, sinh, asinh, tanh, atanh, \ | |
re, im, arg, erf, loggamma, log | |
from sympy.matrices import Matrix, MatrixBase, eye, randMatrix | |
from sympy.matrices.expressions import \ | |
Determinant, HadamardProduct, Inverse, MatrixSymbol, Trace | |
from sympy.printing.tensorflow import tensorflow_code | |
from sympy.tensor.array.expressions.from_matrix_to_array import convert_matrix_to_array | |
from sympy.utilities.lambdify import lambdify | |
from sympy.testing.pytest import skip | |
from sympy.testing.pytest import XFAIL | |
tf = tensorflow = import_module("tensorflow") | |
if tensorflow: | |
# Hide Tensorflow warnings | |
import os | |
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' | |
M = MatrixSymbol("M", 3, 3) | |
N = MatrixSymbol("N", 3, 3) | |
P = MatrixSymbol("P", 3, 3) | |
Q = MatrixSymbol("Q", 3, 3) | |
x, y, z, t = symbols("x y z t") | |
if tf is not None: | |
llo = [list(range(i, i+3)) for i in range(0, 9, 3)] | |
m3x3 = tf.constant(llo) | |
m3x3sympy = Matrix(llo) | |
def _compare_tensorflow_matrix(variables, expr, use_float=False): | |
f = lambdify(variables, expr, 'tensorflow') | |
if not use_float: | |
random_matrices = [randMatrix(v.rows, v.cols) for v in variables] | |
else: | |
random_matrices = [randMatrix(v.rows, v.cols)/100. for v in variables] | |
graph = tf.Graph() | |
r = None | |
with graph.as_default(): | |
random_variables = [eval(tensorflow_code(i)) for i in random_matrices] | |
session = tf.compat.v1.Session(graph=graph) | |
r = session.run(f(*random_variables)) | |
e = expr.subs(dict(zip(variables, random_matrices))) | |
e = e.doit() | |
if e.is_Matrix: | |
if not isinstance(e, MatrixBase): | |
e = e.as_explicit() | |
e = e.tolist() | |
if not use_float: | |
assert (r == e).all() | |
else: | |
r = [i for row in r for i in row] | |
e = [i for row in e for i in row] | |
assert all( | |
abs(a-b) < 10**-(4-int(log(abs(a), 10))) for a, b in zip(r, e)) | |
# Creating a custom inverse test. | |
# See https://github.com/sympy/sympy/issues/18469 | |
def _compare_tensorflow_matrix_inverse(variables, expr, use_float=False): | |
f = lambdify(variables, expr, 'tensorflow') | |
if not use_float: | |
random_matrices = [eye(v.rows, v.cols)*4 for v in variables] | |
else: | |
random_matrices = [eye(v.rows, v.cols)*3.14 for v in variables] | |
graph = tf.Graph() | |
r = None | |
with graph.as_default(): | |
random_variables = [eval(tensorflow_code(i)) for i in random_matrices] | |
session = tf.compat.v1.Session(graph=graph) | |
r = session.run(f(*random_variables)) | |
e = expr.subs(dict(zip(variables, random_matrices))) | |
e = e.doit() | |
if e.is_Matrix: | |
if not isinstance(e, MatrixBase): | |
e = e.as_explicit() | |
e = e.tolist() | |
if not use_float: | |
assert (r == e).all() | |
else: | |
r = [i for row in r for i in row] | |
e = [i for row in e for i in row] | |
assert all( | |
abs(a-b) < 10**-(4-int(log(abs(a), 10))) for a, b in zip(r, e)) | |
def _compare_tensorflow_matrix_scalar(variables, expr): | |
f = lambdify(variables, expr, 'tensorflow') | |
random_matrices = [ | |
randMatrix(v.rows, v.cols).evalf() / 100 for v in variables] | |
graph = tf.Graph() | |
r = None | |
with graph.as_default(): | |
random_variables = [eval(tensorflow_code(i)) for i in random_matrices] | |
session = tf.compat.v1.Session(graph=graph) | |
r = session.run(f(*random_variables)) | |
e = expr.subs(dict(zip(variables, random_matrices))) | |
e = e.doit() | |
assert abs(r-e) < 10**-6 | |
def _compare_tensorflow_scalar( | |
variables, expr, rng=lambda: random.randint(0, 10)): | |
f = lambdify(variables, expr, 'tensorflow') | |
rvs = [rng() for v in variables] | |
graph = tf.Graph() | |
r = None | |
with graph.as_default(): | |
tf_rvs = [eval(tensorflow_code(i)) for i in rvs] | |
session = tf.compat.v1.Session(graph=graph) | |
r = session.run(f(*tf_rvs)) | |
e = expr.subs(dict(zip(variables, rvs))).evalf().doit() | |
assert abs(r-e) < 10**-6 | |
def _compare_tensorflow_relational( | |
variables, expr, rng=lambda: random.randint(0, 10)): | |
f = lambdify(variables, expr, 'tensorflow') | |
rvs = [rng() for v in variables] | |
graph = tf.Graph() | |
r = None | |
with graph.as_default(): | |
tf_rvs = [eval(tensorflow_code(i)) for i in rvs] | |
session = tf.compat.v1.Session(graph=graph) | |
r = session.run(f(*tf_rvs)) | |
e = expr.subs(dict(zip(variables, rvs))).doit() | |
assert r == e | |
def test_tensorflow_printing(): | |
assert tensorflow_code(eye(3)) == \ | |
"tensorflow.constant([[1, 0, 0], [0, 1, 0], [0, 0, 1]])" | |
expr = Matrix([[x, sin(y)], [exp(z), -t]]) | |
assert tensorflow_code(expr) == \ | |
"tensorflow.Variable(" \ | |
"[[x, tensorflow.math.sin(y)]," \ | |
" [tensorflow.math.exp(z), -t]])" | |
# This (random) test is XFAIL because it fails occasionally | |
# See https://github.com/sympy/sympy/issues/18469 | |
def test_tensorflow_math(): | |
if not tf: | |
skip("TensorFlow not installed") | |
expr = Abs(x) | |
assert tensorflow_code(expr) == "tensorflow.math.abs(x)" | |
_compare_tensorflow_scalar((x,), expr) | |
expr = sign(x) | |
assert tensorflow_code(expr) == "tensorflow.math.sign(x)" | |
_compare_tensorflow_scalar((x,), expr) | |
expr = ceiling(x) | |
assert tensorflow_code(expr) == "tensorflow.math.ceil(x)" | |
_compare_tensorflow_scalar((x,), expr, rng=lambda: random.random()) | |
expr = floor(x) | |
assert tensorflow_code(expr) == "tensorflow.math.floor(x)" | |
_compare_tensorflow_scalar((x,), expr, rng=lambda: random.random()) | |
expr = exp(x) | |
assert tensorflow_code(expr) == "tensorflow.math.exp(x)" | |
_compare_tensorflow_scalar((x,), expr, rng=lambda: random.random()) | |
expr = sqrt(x) | |
assert tensorflow_code(expr) == "tensorflow.math.sqrt(x)" | |
_compare_tensorflow_scalar((x,), expr, rng=lambda: random.random()) | |
expr = x ** 4 | |
assert tensorflow_code(expr) == "tensorflow.math.pow(x, 4)" | |
_compare_tensorflow_scalar((x,), expr, rng=lambda: random.random()) | |
expr = cos(x) | |
assert tensorflow_code(expr) == "tensorflow.math.cos(x)" | |
_compare_tensorflow_scalar((x,), expr, rng=lambda: random.random()) | |
expr = acos(x) | |
assert tensorflow_code(expr) == "tensorflow.math.acos(x)" | |
_compare_tensorflow_scalar((x,), expr, rng=lambda: random.uniform(0, 0.95)) | |
expr = sin(x) | |
assert tensorflow_code(expr) == "tensorflow.math.sin(x)" | |
_compare_tensorflow_scalar((x,), expr, rng=lambda: random.random()) | |
expr = asin(x) | |
assert tensorflow_code(expr) == "tensorflow.math.asin(x)" | |
_compare_tensorflow_scalar((x,), expr, rng=lambda: random.random()) | |
expr = tan(x) | |
assert tensorflow_code(expr) == "tensorflow.math.tan(x)" | |
_compare_tensorflow_scalar((x,), expr, rng=lambda: random.random()) | |
expr = atan(x) | |
assert tensorflow_code(expr) == "tensorflow.math.atan(x)" | |
_compare_tensorflow_scalar((x,), expr, rng=lambda: random.random()) | |
expr = atan2(y, x) | |
assert tensorflow_code(expr) == "tensorflow.math.atan2(y, x)" | |
_compare_tensorflow_scalar((y, x), expr, rng=lambda: random.random()) | |
expr = cosh(x) | |
assert tensorflow_code(expr) == "tensorflow.math.cosh(x)" | |
_compare_tensorflow_scalar((x,), expr, rng=lambda: random.random()) | |
expr = acosh(x) | |
assert tensorflow_code(expr) == "tensorflow.math.acosh(x)" | |
_compare_tensorflow_scalar((x,), expr, rng=lambda: random.uniform(1, 2)) | |
expr = sinh(x) | |
assert tensorflow_code(expr) == "tensorflow.math.sinh(x)" | |
_compare_tensorflow_scalar((x,), expr, rng=lambda: random.uniform(1, 2)) | |
expr = asinh(x) | |
assert tensorflow_code(expr) == "tensorflow.math.asinh(x)" | |
_compare_tensorflow_scalar((x,), expr, rng=lambda: random.uniform(1, 2)) | |
expr = tanh(x) | |
assert tensorflow_code(expr) == "tensorflow.math.tanh(x)" | |
_compare_tensorflow_scalar((x,), expr, rng=lambda: random.uniform(1, 2)) | |
expr = atanh(x) | |
assert tensorflow_code(expr) == "tensorflow.math.atanh(x)" | |
_compare_tensorflow_scalar( | |
(x,), expr, rng=lambda: random.uniform(-.5, .5)) | |
expr = erf(x) | |
assert tensorflow_code(expr) == "tensorflow.math.erf(x)" | |
_compare_tensorflow_scalar( | |
(x,), expr, rng=lambda: random.random()) | |
expr = loggamma(x) | |
assert tensorflow_code(expr) == "tensorflow.math.lgamma(x)" | |
_compare_tensorflow_scalar( | |
(x,), expr, rng=lambda: random.random()) | |
def test_tensorflow_complexes(): | |
assert tensorflow_code(re(x)) == "tensorflow.math.real(x)" | |
assert tensorflow_code(im(x)) == "tensorflow.math.imag(x)" | |
assert tensorflow_code(arg(x)) == "tensorflow.math.angle(x)" | |
def test_tensorflow_relational(): | |
if not tf: | |
skip("TensorFlow not installed") | |
expr = Eq(x, y) | |
assert tensorflow_code(expr) == "tensorflow.math.equal(x, y)" | |
_compare_tensorflow_relational((x, y), expr) | |
expr = Ne(x, y) | |
assert tensorflow_code(expr) == "tensorflow.math.not_equal(x, y)" | |
_compare_tensorflow_relational((x, y), expr) | |
expr = Ge(x, y) | |
assert tensorflow_code(expr) == "tensorflow.math.greater_equal(x, y)" | |
_compare_tensorflow_relational((x, y), expr) | |
expr = Gt(x, y) | |
assert tensorflow_code(expr) == "tensorflow.math.greater(x, y)" | |
_compare_tensorflow_relational((x, y), expr) | |
expr = Le(x, y) | |
assert tensorflow_code(expr) == "tensorflow.math.less_equal(x, y)" | |
_compare_tensorflow_relational((x, y), expr) | |
expr = Lt(x, y) | |
assert tensorflow_code(expr) == "tensorflow.math.less(x, y)" | |
_compare_tensorflow_relational((x, y), expr) | |
# This (random) test is XFAIL because it fails occasionally | |
# See https://github.com/sympy/sympy/issues/18469 | |
def test_tensorflow_matrices(): | |
if not tf: | |
skip("TensorFlow not installed") | |
expr = M | |
assert tensorflow_code(expr) == "M" | |
_compare_tensorflow_matrix((M,), expr) | |
expr = M + N | |
assert tensorflow_code(expr) == "tensorflow.math.add(M, N)" | |
_compare_tensorflow_matrix((M, N), expr) | |
expr = M * N | |
assert tensorflow_code(expr) == "tensorflow.linalg.matmul(M, N)" | |
_compare_tensorflow_matrix((M, N), expr) | |
expr = HadamardProduct(M, N) | |
assert tensorflow_code(expr) == "tensorflow.math.multiply(M, N)" | |
_compare_tensorflow_matrix((M, N), expr) | |
expr = M*N*P*Q | |
assert tensorflow_code(expr) == \ | |
"tensorflow.linalg.matmul(" \ | |
"tensorflow.linalg.matmul(" \ | |
"tensorflow.linalg.matmul(M, N), P), Q)" | |
_compare_tensorflow_matrix((M, N, P, Q), expr) | |
expr = M**3 | |
assert tensorflow_code(expr) == \ | |
"tensorflow.linalg.matmul(tensorflow.linalg.matmul(M, M), M)" | |
_compare_tensorflow_matrix((M,), expr) | |
expr = Trace(M) | |
assert tensorflow_code(expr) == "tensorflow.linalg.trace(M)" | |
_compare_tensorflow_matrix((M,), expr) | |
expr = Determinant(M) | |
assert tensorflow_code(expr) == "tensorflow.linalg.det(M)" | |
_compare_tensorflow_matrix_scalar((M,), expr) | |
expr = Inverse(M) | |
assert tensorflow_code(expr) == "tensorflow.linalg.inv(M)" | |
_compare_tensorflow_matrix_inverse((M,), expr, use_float=True) | |
expr = M.T | |
assert tensorflow_code(expr, tensorflow_version='1.14') == \ | |
"tensorflow.linalg.matrix_transpose(M)" | |
assert tensorflow_code(expr, tensorflow_version='1.13') == \ | |
"tensorflow.matrix_transpose(M)" | |
_compare_tensorflow_matrix((M,), expr) | |
def test_codegen_einsum(): | |
if not tf: | |
skip("TensorFlow not installed") | |
graph = tf.Graph() | |
with graph.as_default(): | |
session = tf.compat.v1.Session(graph=graph) | |
M = MatrixSymbol("M", 2, 2) | |
N = MatrixSymbol("N", 2, 2) | |
cg = convert_matrix_to_array(M * N) | |
f = lambdify((M, N), cg, 'tensorflow') | |
ma = tf.constant([[1, 2], [3, 4]]) | |
mb = tf.constant([[1,-2], [-1, 3]]) | |
y = session.run(f(ma, mb)) | |
c = session.run(tf.matmul(ma, mb)) | |
assert (y == c).all() | |
def test_codegen_extra(): | |
if not tf: | |
skip("TensorFlow not installed") | |
graph = tf.Graph() | |
with graph.as_default(): | |
session = tf.compat.v1.Session() | |
M = MatrixSymbol("M", 2, 2) | |
N = MatrixSymbol("N", 2, 2) | |
P = MatrixSymbol("P", 2, 2) | |
Q = MatrixSymbol("Q", 2, 2) | |
ma = tf.constant([[1, 2], [3, 4]]) | |
mb = tf.constant([[1,-2], [-1, 3]]) | |
mc = tf.constant([[2, 0], [1, 2]]) | |
md = tf.constant([[1,-1], [4, 7]]) | |
cg = ArrayTensorProduct(M, N) | |
assert tensorflow_code(cg) == \ | |
'tensorflow.linalg.einsum("ab,cd", M, N)' | |
f = lambdify((M, N), cg, 'tensorflow') | |
y = session.run(f(ma, mb)) | |
c = session.run(tf.einsum("ij,kl", ma, mb)) | |
assert (y == c).all() | |
cg = ArrayAdd(M, N) | |
assert tensorflow_code(cg) == 'tensorflow.math.add(M, N)' | |
f = lambdify((M, N), cg, 'tensorflow') | |
y = session.run(f(ma, mb)) | |
c = session.run(ma + mb) | |
assert (y == c).all() | |
cg = ArrayAdd(M, N, P) | |
assert tensorflow_code(cg) == \ | |
'tensorflow.math.add(tensorflow.math.add(M, N), P)' | |
f = lambdify((M, N, P), cg, 'tensorflow') | |
y = session.run(f(ma, mb, mc)) | |
c = session.run(ma + mb + mc) | |
assert (y == c).all() | |
cg = ArrayAdd(M, N, P, Q) | |
assert tensorflow_code(cg) == \ | |
'tensorflow.math.add(' \ | |
'tensorflow.math.add(tensorflow.math.add(M, N), P), Q)' | |
f = lambdify((M, N, P, Q), cg, 'tensorflow') | |
y = session.run(f(ma, mb, mc, md)) | |
c = session.run(ma + mb + mc + md) | |
assert (y == c).all() | |
cg = PermuteDims(M, [1, 0]) | |
assert tensorflow_code(cg) == 'tensorflow.transpose(M, [1, 0])' | |
f = lambdify((M,), cg, 'tensorflow') | |
y = session.run(f(ma)) | |
c = session.run(tf.transpose(ma)) | |
assert (y == c).all() | |
cg = PermuteDims(ArrayTensorProduct(M, N), [1, 2, 3, 0]) | |
assert tensorflow_code(cg) == \ | |
'tensorflow.transpose(' \ | |
'tensorflow.linalg.einsum("ab,cd", M, N), [1, 2, 3, 0])' | |
f = lambdify((M, N), cg, 'tensorflow') | |
y = session.run(f(ma, mb)) | |
c = session.run(tf.transpose(tf.einsum("ab,cd", ma, mb), [1, 2, 3, 0])) | |
assert (y == c).all() | |
cg = ArrayDiagonal(ArrayTensorProduct(M, N), (1, 2)) | |
assert tensorflow_code(cg) == \ | |
'tensorflow.linalg.einsum("ab,bc->acb", M, N)' | |
f = lambdify((M, N), cg, 'tensorflow') | |
y = session.run(f(ma, mb)) | |
c = session.run(tf.einsum("ab,bc->acb", ma, mb)) | |
assert (y == c).all() | |
def test_MatrixElement_printing(): | |
A = MatrixSymbol("A", 1, 3) | |
B = MatrixSymbol("B", 1, 3) | |
C = MatrixSymbol("C", 1, 3) | |
assert tensorflow_code(A[0, 0]) == "A[0, 0]" | |
assert tensorflow_code(3 * A[0, 0]) == "3*A[0, 0]" | |
F = C[0, 0].subs(C, A - B) | |
assert tensorflow_code(F) == "(tensorflow.math.add((-1)*B, A))[0, 0]" | |
def test_tensorflow_Derivative(): | |
expr = Derivative(sin(x), x) | |
assert tensorflow_code(expr) == \ | |
"tensorflow.gradients(tensorflow.math.sin(x), x)[0]" | |