Spaces:
Running
Running
File size: 15,578 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 |
import random
from sympy.core.function import Derivative
from sympy.core.symbol import symbols
from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct, ArrayAdd, \
PermuteDims, ArrayDiagonal
from sympy.core.relational import Eq, Ne, Ge, Gt, Le, Lt
from sympy.external import import_module
from sympy.functions import \
Abs, ceiling, exp, floor, sign, sin, asin, sqrt, cos, \
acos, tan, atan, atan2, cosh, acosh, sinh, asinh, tanh, atanh, \
re, im, arg, erf, loggamma, log
from sympy.matrices import Matrix, MatrixBase, eye, randMatrix
from sympy.matrices.expressions import \
Determinant, HadamardProduct, Inverse, MatrixSymbol, Trace
from sympy.printing.tensorflow import tensorflow_code
from sympy.tensor.array.expressions.from_matrix_to_array import convert_matrix_to_array
from sympy.utilities.lambdify import lambdify
from sympy.testing.pytest import skip
from sympy.testing.pytest import XFAIL
tf = tensorflow = import_module("tensorflow")
if tensorflow:
# Hide Tensorflow warnings
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
M = MatrixSymbol("M", 3, 3)
N = MatrixSymbol("N", 3, 3)
P = MatrixSymbol("P", 3, 3)
Q = MatrixSymbol("Q", 3, 3)
x, y, z, t = symbols("x y z t")
if tf is not None:
llo = [list(range(i, i+3)) for i in range(0, 9, 3)]
m3x3 = tf.constant(llo)
m3x3sympy = Matrix(llo)
def _compare_tensorflow_matrix(variables, expr, use_float=False):
f = lambdify(variables, expr, 'tensorflow')
if not use_float:
random_matrices = [randMatrix(v.rows, v.cols) for v in variables]
else:
random_matrices = [randMatrix(v.rows, v.cols)/100. for v in variables]
graph = tf.Graph()
r = None
with graph.as_default():
random_variables = [eval(tensorflow_code(i)) for i in random_matrices]
session = tf.compat.v1.Session(graph=graph)
r = session.run(f(*random_variables))
e = expr.subs(dict(zip(variables, random_matrices)))
e = e.doit()
if e.is_Matrix:
if not isinstance(e, MatrixBase):
e = e.as_explicit()
e = e.tolist()
if not use_float:
assert (r == e).all()
else:
r = [i for row in r for i in row]
e = [i for row in e for i in row]
assert all(
abs(a-b) < 10**-(4-int(log(abs(a), 10))) for a, b in zip(r, e))
# Creating a custom inverse test.
# See https://github.com/sympy/sympy/issues/18469
def _compare_tensorflow_matrix_inverse(variables, expr, use_float=False):
f = lambdify(variables, expr, 'tensorflow')
if not use_float:
random_matrices = [eye(v.rows, v.cols)*4 for v in variables]
else:
random_matrices = [eye(v.rows, v.cols)*3.14 for v in variables]
graph = tf.Graph()
r = None
with graph.as_default():
random_variables = [eval(tensorflow_code(i)) for i in random_matrices]
session = tf.compat.v1.Session(graph=graph)
r = session.run(f(*random_variables))
e = expr.subs(dict(zip(variables, random_matrices)))
e = e.doit()
if e.is_Matrix:
if not isinstance(e, MatrixBase):
e = e.as_explicit()
e = e.tolist()
if not use_float:
assert (r == e).all()
else:
r = [i for row in r for i in row]
e = [i for row in e for i in row]
assert all(
abs(a-b) < 10**-(4-int(log(abs(a), 10))) for a, b in zip(r, e))
def _compare_tensorflow_matrix_scalar(variables, expr):
f = lambdify(variables, expr, 'tensorflow')
random_matrices = [
randMatrix(v.rows, v.cols).evalf() / 100 for v in variables]
graph = tf.Graph()
r = None
with graph.as_default():
random_variables = [eval(tensorflow_code(i)) for i in random_matrices]
session = tf.compat.v1.Session(graph=graph)
r = session.run(f(*random_variables))
e = expr.subs(dict(zip(variables, random_matrices)))
e = e.doit()
assert abs(r-e) < 10**-6
def _compare_tensorflow_scalar(
variables, expr, rng=lambda: random.randint(0, 10)):
f = lambdify(variables, expr, 'tensorflow')
rvs = [rng() for v in variables]
graph = tf.Graph()
r = None
with graph.as_default():
tf_rvs = [eval(tensorflow_code(i)) for i in rvs]
session = tf.compat.v1.Session(graph=graph)
r = session.run(f(*tf_rvs))
e = expr.subs(dict(zip(variables, rvs))).evalf().doit()
assert abs(r-e) < 10**-6
def _compare_tensorflow_relational(
variables, expr, rng=lambda: random.randint(0, 10)):
f = lambdify(variables, expr, 'tensorflow')
rvs = [rng() for v in variables]
graph = tf.Graph()
r = None
with graph.as_default():
tf_rvs = [eval(tensorflow_code(i)) for i in rvs]
session = tf.compat.v1.Session(graph=graph)
r = session.run(f(*tf_rvs))
e = expr.subs(dict(zip(variables, rvs))).doit()
assert r == e
def test_tensorflow_printing():
assert tensorflow_code(eye(3)) == \
"tensorflow.constant([[1, 0, 0], [0, 1, 0], [0, 0, 1]])"
expr = Matrix([[x, sin(y)], [exp(z), -t]])
assert tensorflow_code(expr) == \
"tensorflow.Variable(" \
"[[x, tensorflow.math.sin(y)]," \
" [tensorflow.math.exp(z), -t]])"
# This (random) test is XFAIL because it fails occasionally
# See https://github.com/sympy/sympy/issues/18469
@XFAIL
def test_tensorflow_math():
if not tf:
skip("TensorFlow not installed")
expr = Abs(x)
assert tensorflow_code(expr) == "tensorflow.math.abs(x)"
_compare_tensorflow_scalar((x,), expr)
expr = sign(x)
assert tensorflow_code(expr) == "tensorflow.math.sign(x)"
_compare_tensorflow_scalar((x,), expr)
expr = ceiling(x)
assert tensorflow_code(expr) == "tensorflow.math.ceil(x)"
_compare_tensorflow_scalar((x,), expr, rng=lambda: random.random())
expr = floor(x)
assert tensorflow_code(expr) == "tensorflow.math.floor(x)"
_compare_tensorflow_scalar((x,), expr, rng=lambda: random.random())
expr = exp(x)
assert tensorflow_code(expr) == "tensorflow.math.exp(x)"
_compare_tensorflow_scalar((x,), expr, rng=lambda: random.random())
expr = sqrt(x)
assert tensorflow_code(expr) == "tensorflow.math.sqrt(x)"
_compare_tensorflow_scalar((x,), expr, rng=lambda: random.random())
expr = x ** 4
assert tensorflow_code(expr) == "tensorflow.math.pow(x, 4)"
_compare_tensorflow_scalar((x,), expr, rng=lambda: random.random())
expr = cos(x)
assert tensorflow_code(expr) == "tensorflow.math.cos(x)"
_compare_tensorflow_scalar((x,), expr, rng=lambda: random.random())
expr = acos(x)
assert tensorflow_code(expr) == "tensorflow.math.acos(x)"
_compare_tensorflow_scalar((x,), expr, rng=lambda: random.uniform(0, 0.95))
expr = sin(x)
assert tensorflow_code(expr) == "tensorflow.math.sin(x)"
_compare_tensorflow_scalar((x,), expr, rng=lambda: random.random())
expr = asin(x)
assert tensorflow_code(expr) == "tensorflow.math.asin(x)"
_compare_tensorflow_scalar((x,), expr, rng=lambda: random.random())
expr = tan(x)
assert tensorflow_code(expr) == "tensorflow.math.tan(x)"
_compare_tensorflow_scalar((x,), expr, rng=lambda: random.random())
expr = atan(x)
assert tensorflow_code(expr) == "tensorflow.math.atan(x)"
_compare_tensorflow_scalar((x,), expr, rng=lambda: random.random())
expr = atan2(y, x)
assert tensorflow_code(expr) == "tensorflow.math.atan2(y, x)"
_compare_tensorflow_scalar((y, x), expr, rng=lambda: random.random())
expr = cosh(x)
assert tensorflow_code(expr) == "tensorflow.math.cosh(x)"
_compare_tensorflow_scalar((x,), expr, rng=lambda: random.random())
expr = acosh(x)
assert tensorflow_code(expr) == "tensorflow.math.acosh(x)"
_compare_tensorflow_scalar((x,), expr, rng=lambda: random.uniform(1, 2))
expr = sinh(x)
assert tensorflow_code(expr) == "tensorflow.math.sinh(x)"
_compare_tensorflow_scalar((x,), expr, rng=lambda: random.uniform(1, 2))
expr = asinh(x)
assert tensorflow_code(expr) == "tensorflow.math.asinh(x)"
_compare_tensorflow_scalar((x,), expr, rng=lambda: random.uniform(1, 2))
expr = tanh(x)
assert tensorflow_code(expr) == "tensorflow.math.tanh(x)"
_compare_tensorflow_scalar((x,), expr, rng=lambda: random.uniform(1, 2))
expr = atanh(x)
assert tensorflow_code(expr) == "tensorflow.math.atanh(x)"
_compare_tensorflow_scalar(
(x,), expr, rng=lambda: random.uniform(-.5, .5))
expr = erf(x)
assert tensorflow_code(expr) == "tensorflow.math.erf(x)"
_compare_tensorflow_scalar(
(x,), expr, rng=lambda: random.random())
expr = loggamma(x)
assert tensorflow_code(expr) == "tensorflow.math.lgamma(x)"
_compare_tensorflow_scalar(
(x,), expr, rng=lambda: random.random())
def test_tensorflow_complexes():
assert tensorflow_code(re(x)) == "tensorflow.math.real(x)"
assert tensorflow_code(im(x)) == "tensorflow.math.imag(x)"
assert tensorflow_code(arg(x)) == "tensorflow.math.angle(x)"
def test_tensorflow_relational():
if not tf:
skip("TensorFlow not installed")
expr = Eq(x, y)
assert tensorflow_code(expr) == "tensorflow.math.equal(x, y)"
_compare_tensorflow_relational((x, y), expr)
expr = Ne(x, y)
assert tensorflow_code(expr) == "tensorflow.math.not_equal(x, y)"
_compare_tensorflow_relational((x, y), expr)
expr = Ge(x, y)
assert tensorflow_code(expr) == "tensorflow.math.greater_equal(x, y)"
_compare_tensorflow_relational((x, y), expr)
expr = Gt(x, y)
assert tensorflow_code(expr) == "tensorflow.math.greater(x, y)"
_compare_tensorflow_relational((x, y), expr)
expr = Le(x, y)
assert tensorflow_code(expr) == "tensorflow.math.less_equal(x, y)"
_compare_tensorflow_relational((x, y), expr)
expr = Lt(x, y)
assert tensorflow_code(expr) == "tensorflow.math.less(x, y)"
_compare_tensorflow_relational((x, y), expr)
# This (random) test is XFAIL because it fails occasionally
# See https://github.com/sympy/sympy/issues/18469
@XFAIL
def test_tensorflow_matrices():
if not tf:
skip("TensorFlow not installed")
expr = M
assert tensorflow_code(expr) == "M"
_compare_tensorflow_matrix((M,), expr)
expr = M + N
assert tensorflow_code(expr) == "tensorflow.math.add(M, N)"
_compare_tensorflow_matrix((M, N), expr)
expr = M * N
assert tensorflow_code(expr) == "tensorflow.linalg.matmul(M, N)"
_compare_tensorflow_matrix((M, N), expr)
expr = HadamardProduct(M, N)
assert tensorflow_code(expr) == "tensorflow.math.multiply(M, N)"
_compare_tensorflow_matrix((M, N), expr)
expr = M*N*P*Q
assert tensorflow_code(expr) == \
"tensorflow.linalg.matmul(" \
"tensorflow.linalg.matmul(" \
"tensorflow.linalg.matmul(M, N), P), Q)"
_compare_tensorflow_matrix((M, N, P, Q), expr)
expr = M**3
assert tensorflow_code(expr) == \
"tensorflow.linalg.matmul(tensorflow.linalg.matmul(M, M), M)"
_compare_tensorflow_matrix((M,), expr)
expr = Trace(M)
assert tensorflow_code(expr) == "tensorflow.linalg.trace(M)"
_compare_tensorflow_matrix((M,), expr)
expr = Determinant(M)
assert tensorflow_code(expr) == "tensorflow.linalg.det(M)"
_compare_tensorflow_matrix_scalar((M,), expr)
expr = Inverse(M)
assert tensorflow_code(expr) == "tensorflow.linalg.inv(M)"
_compare_tensorflow_matrix_inverse((M,), expr, use_float=True)
expr = M.T
assert tensorflow_code(expr, tensorflow_version='1.14') == \
"tensorflow.linalg.matrix_transpose(M)"
assert tensorflow_code(expr, tensorflow_version='1.13') == \
"tensorflow.matrix_transpose(M)"
_compare_tensorflow_matrix((M,), expr)
def test_codegen_einsum():
if not tf:
skip("TensorFlow not installed")
graph = tf.Graph()
with graph.as_default():
session = tf.compat.v1.Session(graph=graph)
M = MatrixSymbol("M", 2, 2)
N = MatrixSymbol("N", 2, 2)
cg = convert_matrix_to_array(M * N)
f = lambdify((M, N), cg, 'tensorflow')
ma = tf.constant([[1, 2], [3, 4]])
mb = tf.constant([[1,-2], [-1, 3]])
y = session.run(f(ma, mb))
c = session.run(tf.matmul(ma, mb))
assert (y == c).all()
def test_codegen_extra():
if not tf:
skip("TensorFlow not installed")
graph = tf.Graph()
with graph.as_default():
session = tf.compat.v1.Session()
M = MatrixSymbol("M", 2, 2)
N = MatrixSymbol("N", 2, 2)
P = MatrixSymbol("P", 2, 2)
Q = MatrixSymbol("Q", 2, 2)
ma = tf.constant([[1, 2], [3, 4]])
mb = tf.constant([[1,-2], [-1, 3]])
mc = tf.constant([[2, 0], [1, 2]])
md = tf.constant([[1,-1], [4, 7]])
cg = ArrayTensorProduct(M, N)
assert tensorflow_code(cg) == \
'tensorflow.linalg.einsum("ab,cd", M, N)'
f = lambdify((M, N), cg, 'tensorflow')
y = session.run(f(ma, mb))
c = session.run(tf.einsum("ij,kl", ma, mb))
assert (y == c).all()
cg = ArrayAdd(M, N)
assert tensorflow_code(cg) == 'tensorflow.math.add(M, N)'
f = lambdify((M, N), cg, 'tensorflow')
y = session.run(f(ma, mb))
c = session.run(ma + mb)
assert (y == c).all()
cg = ArrayAdd(M, N, P)
assert tensorflow_code(cg) == \
'tensorflow.math.add(tensorflow.math.add(M, N), P)'
f = lambdify((M, N, P), cg, 'tensorflow')
y = session.run(f(ma, mb, mc))
c = session.run(ma + mb + mc)
assert (y == c).all()
cg = ArrayAdd(M, N, P, Q)
assert tensorflow_code(cg) == \
'tensorflow.math.add(' \
'tensorflow.math.add(tensorflow.math.add(M, N), P), Q)'
f = lambdify((M, N, P, Q), cg, 'tensorflow')
y = session.run(f(ma, mb, mc, md))
c = session.run(ma + mb + mc + md)
assert (y == c).all()
cg = PermuteDims(M, [1, 0])
assert tensorflow_code(cg) == 'tensorflow.transpose(M, [1, 0])'
f = lambdify((M,), cg, 'tensorflow')
y = session.run(f(ma))
c = session.run(tf.transpose(ma))
assert (y == c).all()
cg = PermuteDims(ArrayTensorProduct(M, N), [1, 2, 3, 0])
assert tensorflow_code(cg) == \
'tensorflow.transpose(' \
'tensorflow.linalg.einsum("ab,cd", M, N), [1, 2, 3, 0])'
f = lambdify((M, N), cg, 'tensorflow')
y = session.run(f(ma, mb))
c = session.run(tf.transpose(tf.einsum("ab,cd", ma, mb), [1, 2, 3, 0]))
assert (y == c).all()
cg = ArrayDiagonal(ArrayTensorProduct(M, N), (1, 2))
assert tensorflow_code(cg) == \
'tensorflow.linalg.einsum("ab,bc->acb", M, N)'
f = lambdify((M, N), cg, 'tensorflow')
y = session.run(f(ma, mb))
c = session.run(tf.einsum("ab,bc->acb", ma, mb))
assert (y == c).all()
def test_MatrixElement_printing():
A = MatrixSymbol("A", 1, 3)
B = MatrixSymbol("B", 1, 3)
C = MatrixSymbol("C", 1, 3)
assert tensorflow_code(A[0, 0]) == "A[0, 0]"
assert tensorflow_code(3 * A[0, 0]) == "3*A[0, 0]"
F = C[0, 0].subs(C, A - B)
assert tensorflow_code(F) == "(tensorflow.math.add((-1)*B, A))[0, 0]"
def test_tensorflow_Derivative():
expr = Derivative(sin(x), x)
assert tensorflow_code(expr) == \
"tensorflow.gradients(tensorflow.math.sin(x), x)[0]"
|