Spaces:
Running
Running
"""Tests for the implementation of RootOf class and related tools. """ | |
from sympy.polys.polytools import Poly | |
import sympy.polys.rootoftools as rootoftools | |
from sympy.polys.rootoftools import (rootof, RootOf, CRootOf, RootSum, | |
_pure_key_dict as D) | |
from sympy.polys.polyerrors import ( | |
MultivariatePolynomialError, | |
GeneratorsNeeded, | |
PolynomialError, | |
) | |
from sympy.core.function import (Function, Lambda) | |
from sympy.core.numbers import (Float, I, Rational) | |
from sympy.core.relational import Eq | |
from sympy.core.singleton import S | |
from sympy.functions.elementary.exponential import (exp, log) | |
from sympy.functions.elementary.miscellaneous import sqrt | |
from sympy.functions.elementary.trigonometric import tan | |
from sympy.integrals.integrals import Integral | |
from sympy.polys.orthopolys import legendre_poly | |
from sympy.solvers.solvers import solve | |
from sympy.testing.pytest import raises, slow | |
from sympy.core.expr import unchanged | |
from sympy.abc import a, b, x, y, z, r | |
def test_CRootOf___new__(): | |
assert rootof(x, 0) == 0 | |
assert rootof(x, -1) == 0 | |
assert rootof(x, S.Zero) == 0 | |
assert rootof(x - 1, 0) == 1 | |
assert rootof(x - 1, -1) == 1 | |
assert rootof(x + 1, 0) == -1 | |
assert rootof(x + 1, -1) == -1 | |
assert rootof(x**2 + 2*x + 3, 0) == -1 - I*sqrt(2) | |
assert rootof(x**2 + 2*x + 3, 1) == -1 + I*sqrt(2) | |
assert rootof(x**2 + 2*x + 3, -1) == -1 + I*sqrt(2) | |
assert rootof(x**2 + 2*x + 3, -2) == -1 - I*sqrt(2) | |
r = rootof(x**2 + 2*x + 3, 0, radicals=False) | |
assert isinstance(r, RootOf) is True | |
r = rootof(x**2 + 2*x + 3, 1, radicals=False) | |
assert isinstance(r, RootOf) is True | |
r = rootof(x**2 + 2*x + 3, -1, radicals=False) | |
assert isinstance(r, RootOf) is True | |
r = rootof(x**2 + 2*x + 3, -2, radicals=False) | |
assert isinstance(r, RootOf) is True | |
assert rootof((x - 1)*(x + 1), 0, radicals=False) == -1 | |
assert rootof((x - 1)*(x + 1), 1, radicals=False) == 1 | |
assert rootof((x - 1)*(x + 1), -1, radicals=False) == 1 | |
assert rootof((x - 1)*(x + 1), -2, radicals=False) == -1 | |
assert rootof((x - 1)*(x + 1), 0, radicals=True) == -1 | |
assert rootof((x - 1)*(x + 1), 1, radicals=True) == 1 | |
assert rootof((x - 1)*(x + 1), -1, radicals=True) == 1 | |
assert rootof((x - 1)*(x + 1), -2, radicals=True) == -1 | |
assert rootof((x - 1)*(x**3 + x + 3), 0) == rootof(x**3 + x + 3, 0) | |
assert rootof((x - 1)*(x**3 + x + 3), 1) == 1 | |
assert rootof((x - 1)*(x**3 + x + 3), 2) == rootof(x**3 + x + 3, 1) | |
assert rootof((x - 1)*(x**3 + x + 3), 3) == rootof(x**3 + x + 3, 2) | |
assert rootof((x - 1)*(x**3 + x + 3), -1) == rootof(x**3 + x + 3, 2) | |
assert rootof((x - 1)*(x**3 + x + 3), -2) == rootof(x**3 + x + 3, 1) | |
assert rootof((x - 1)*(x**3 + x + 3), -3) == 1 | |
assert rootof((x - 1)*(x**3 + x + 3), -4) == rootof(x**3 + x + 3, 0) | |
assert rootof(x**4 + 3*x**3, 0) == -3 | |
assert rootof(x**4 + 3*x**3, 1) == 0 | |
assert rootof(x**4 + 3*x**3, 2) == 0 | |
assert rootof(x**4 + 3*x**3, 3) == 0 | |
raises(GeneratorsNeeded, lambda: rootof(0, 0)) | |
raises(GeneratorsNeeded, lambda: rootof(1, 0)) | |
raises(PolynomialError, lambda: rootof(Poly(0, x), 0)) | |
raises(PolynomialError, lambda: rootof(Poly(1, x), 0)) | |
raises(PolynomialError, lambda: rootof(x - y, 0)) | |
# issue 8617 | |
raises(PolynomialError, lambda: rootof(exp(x), 0)) | |
raises(NotImplementedError, lambda: rootof(x**3 - x + sqrt(2), 0)) | |
raises(NotImplementedError, lambda: rootof(x**3 - x + I, 0)) | |
raises(IndexError, lambda: rootof(x**2 - 1, -4)) | |
raises(IndexError, lambda: rootof(x**2 - 1, -3)) | |
raises(IndexError, lambda: rootof(x**2 - 1, 2)) | |
raises(IndexError, lambda: rootof(x**2 - 1, 3)) | |
raises(ValueError, lambda: rootof(x**2 - 1, x)) | |
assert rootof(Poly(x - y, x), 0) == y | |
assert rootof(Poly(x**2 - y, x), 0) == -sqrt(y) | |
assert rootof(Poly(x**2 - y, x), 1) == sqrt(y) | |
assert rootof(Poly(x**3 - y, x), 0) == y**Rational(1, 3) | |
assert rootof(y*x**3 + y*x + 2*y, x, 0) == -1 | |
raises(NotImplementedError, lambda: rootof(x**3 + x + 2*y, x, 0)) | |
assert rootof(x**3 + x + 1, 0).is_commutative is True | |
def test_CRootOf_attributes(): | |
r = rootof(x**3 + x + 3, 0) | |
assert r.is_number | |
assert r.free_symbols == set() | |
# if the following assertion fails then multivariate polynomials | |
# are apparently supported and the RootOf.free_symbols routine | |
# should be changed to return whatever symbols would not be | |
# the PurePoly dummy symbol | |
raises(NotImplementedError, lambda: rootof(Poly(x**3 + y*x + 1, x), 0)) | |
def test_CRootOf___eq__(): | |
assert (rootof(x**3 + x + 3, 0) == rootof(x**3 + x + 3, 0)) is True | |
assert (rootof(x**3 + x + 3, 0) == rootof(x**3 + x + 3, 1)) is False | |
assert (rootof(x**3 + x + 3, 1) == rootof(x**3 + x + 3, 1)) is True | |
assert (rootof(x**3 + x + 3, 1) == rootof(x**3 + x + 3, 2)) is False | |
assert (rootof(x**3 + x + 3, 2) == rootof(x**3 + x + 3, 2)) is True | |
assert (rootof(x**3 + x + 3, 0) == rootof(y**3 + y + 3, 0)) is True | |
assert (rootof(x**3 + x + 3, 0) == rootof(y**3 + y + 3, 1)) is False | |
assert (rootof(x**3 + x + 3, 1) == rootof(y**3 + y + 3, 1)) is True | |
assert (rootof(x**3 + x + 3, 1) == rootof(y**3 + y + 3, 2)) is False | |
assert (rootof(x**3 + x + 3, 2) == rootof(y**3 + y + 3, 2)) is True | |
def test_CRootOf___eval_Eq__(): | |
f = Function('f') | |
eq = x**3 + x + 3 | |
r = rootof(eq, 2) | |
r1 = rootof(eq, 1) | |
assert Eq(r, r1) is S.false | |
assert Eq(r, r) is S.true | |
assert unchanged(Eq, r, x) | |
assert Eq(r, 0) is S.false | |
assert Eq(r, S.Infinity) is S.false | |
assert Eq(r, I) is S.false | |
assert unchanged(Eq, r, f(0)) | |
sol = solve(eq) | |
for s in sol: | |
if s.is_real: | |
assert Eq(r, s) is S.false | |
r = rootof(eq, 0) | |
for s in sol: | |
if s.is_real: | |
assert Eq(r, s) is S.true | |
eq = x**3 + x + 1 | |
sol = solve(eq) | |
assert [Eq(rootof(eq, i), j) for i in range(3) for j in sol | |
].count(True) == 3 | |
assert Eq(rootof(eq, 0), 1 + S.ImaginaryUnit) == False | |
def test_CRootOf_is_real(): | |
assert rootof(x**3 + x + 3, 0).is_real is True | |
assert rootof(x**3 + x + 3, 1).is_real is False | |
assert rootof(x**3 + x + 3, 2).is_real is False | |
def test_CRootOf_is_complex(): | |
assert rootof(x**3 + x + 3, 0).is_complex is True | |
def test_CRootOf_subs(): | |
assert rootof(x**3 + x + 1, 0).subs(x, y) == rootof(y**3 + y + 1, 0) | |
def test_CRootOf_diff(): | |
assert rootof(x**3 + x + 1, 0).diff(x) == 0 | |
assert rootof(x**3 + x + 1, 0).diff(y) == 0 | |
def test_CRootOf_evalf(): | |
real = rootof(x**3 + x + 3, 0).evalf(n=20) | |
assert real.epsilon_eq(Float("-1.2134116627622296341")) | |
re, im = rootof(x**3 + x + 3, 1).evalf(n=20).as_real_imag() | |
assert re.epsilon_eq( Float("0.60670583138111481707")) | |
assert im.epsilon_eq(-Float("1.45061224918844152650")) | |
re, im = rootof(x**3 + x + 3, 2).evalf(n=20).as_real_imag() | |
assert re.epsilon_eq(Float("0.60670583138111481707")) | |
assert im.epsilon_eq(Float("1.45061224918844152650")) | |
p = legendre_poly(4, x, polys=True) | |
roots = [str(r.n(17)) for r in p.real_roots()] | |
# magnitudes are given by | |
# sqrt(3/S(7) - 2*sqrt(6/S(5))/7) | |
# and | |
# sqrt(3/S(7) + 2*sqrt(6/S(5))/7) | |
assert roots == [ | |
"-0.86113631159405258", | |
"-0.33998104358485626", | |
"0.33998104358485626", | |
"0.86113631159405258", | |
] | |
re = rootof(x**5 - 5*x + 12, 0).evalf(n=20) | |
assert re.epsilon_eq(Float("-1.84208596619025438271")) | |
re, im = rootof(x**5 - 5*x + 12, 1).evalf(n=20).as_real_imag() | |
assert re.epsilon_eq(Float("-0.351854240827371999559")) | |
assert im.epsilon_eq(Float("-1.709561043370328882010")) | |
re, im = rootof(x**5 - 5*x + 12, 2).evalf(n=20).as_real_imag() | |
assert re.epsilon_eq(Float("-0.351854240827371999559")) | |
assert im.epsilon_eq(Float("+1.709561043370328882010")) | |
re, im = rootof(x**5 - 5*x + 12, 3).evalf(n=20).as_real_imag() | |
assert re.epsilon_eq(Float("+1.272897223922499190910")) | |
assert im.epsilon_eq(Float("-0.719798681483861386681")) | |
re, im = rootof(x**5 - 5*x + 12, 4).evalf(n=20).as_real_imag() | |
assert re.epsilon_eq(Float("+1.272897223922499190910")) | |
assert im.epsilon_eq(Float("+0.719798681483861386681")) | |
# issue 6393 | |
assert str(rootof(x**5 + 2*x**4 + x**3 - 68719476736, 0).n(3)) == '147.' | |
eq = (531441*x**11 + 3857868*x**10 + 13730229*x**9 + 32597882*x**8 + | |
55077472*x**7 + 60452000*x**6 + 32172064*x**5 - 4383808*x**4 - | |
11942912*x**3 - 1506304*x**2 + 1453312*x + 512) | |
a, b = rootof(eq, 1).n(2).as_real_imag() | |
c, d = rootof(eq, 2).n(2).as_real_imag() | |
assert a == c | |
assert b < d | |
assert b == -d | |
# issue 6451 | |
r = rootof(legendre_poly(64, x), 7) | |
assert r.n(2) == r.n(100).n(2) | |
# issue 9019 | |
r0 = rootof(x**2 + 1, 0, radicals=False) | |
r1 = rootof(x**2 + 1, 1, radicals=False) | |
assert r0.n(4) == Float(-1.0, 4) * I | |
assert r1.n(4) == Float(1.0, 4) * I | |
# make sure verification is used in case a max/min traps the "root" | |
assert str(rootof(4*x**5 + 16*x**3 + 12*x**2 + 7, 0).n(3)) == '-0.976' | |
# watch out for UnboundLocalError | |
c = CRootOf(90720*x**6 - 4032*x**4 + 84*x**2 - 1, 0) | |
assert c._eval_evalf(2) # doesn't fail | |
# watch out for imaginary parts that don't want to evaluate | |
assert str(RootOf(x**16 + 32*x**14 + 508*x**12 + 5440*x**10 + | |
39510*x**8 + 204320*x**6 + 755548*x**4 + 1434496*x**2 + | |
877969, 10).n(2)) == '-3.4*I' | |
assert abs(RootOf(x**4 + 10*x**2 + 1, 0).n(2)) < 0.4 | |
# check reset and args | |
r = [RootOf(x**3 + x + 3, i) for i in range(3)] | |
r[0]._reset() | |
for ri in r: | |
i = ri._get_interval() | |
ri.n(2) | |
assert i != ri._get_interval() | |
ri._reset() | |
assert i == ri._get_interval() | |
assert i == i.func(*i.args) | |
def test_issue_24978(): | |
# Irreducible poly with negative leading coeff is normalized | |
# (factor of -1 is extracted), before being stored as CRootOf.poly. | |
f = -x**2 + 2 | |
r = CRootOf(f, 0) | |
assert r.poly.as_expr() == x**2 - 2 | |
# An action that prompts calculation of an interval puts r.poly in | |
# the cache. | |
r.n() | |
assert r.poly in rootoftools._reals_cache | |
def test_CRootOf_evalf_caching_bug(): | |
r = rootof(x**5 - 5*x + 12, 1) | |
r.n() | |
a = r._get_interval() | |
r = rootof(x**5 - 5*x + 12, 1) | |
r.n() | |
b = r._get_interval() | |
assert a == b | |
def test_CRootOf_real_roots(): | |
assert Poly(x**5 + x + 1).real_roots() == [rootof(x**3 - x**2 + 1, 0)] | |
assert Poly(x**5 + x + 1).real_roots(radicals=False) == [rootof( | |
x**3 - x**2 + 1, 0)] | |
# https://github.com/sympy/sympy/issues/20902 | |
p = Poly(-3*x**4 - 10*x**3 - 12*x**2 - 6*x - 1, x, domain='ZZ') | |
assert CRootOf.real_roots(p) == [S(-1), S(-1), S(-1), S(-1)/3] | |
def test_CRootOf_all_roots(): | |
assert Poly(x**5 + x + 1).all_roots() == [ | |
rootof(x**3 - x**2 + 1, 0), | |
Rational(-1, 2) - sqrt(3)*I/2, | |
Rational(-1, 2) + sqrt(3)*I/2, | |
rootof(x**3 - x**2 + 1, 1), | |
rootof(x**3 - x**2 + 1, 2), | |
] | |
assert Poly(x**5 + x + 1).all_roots(radicals=False) == [ | |
rootof(x**3 - x**2 + 1, 0), | |
rootof(x**2 + x + 1, 0, radicals=False), | |
rootof(x**2 + x + 1, 1, radicals=False), | |
rootof(x**3 - x**2 + 1, 1), | |
rootof(x**3 - x**2 + 1, 2), | |
] | |
def test_CRootOf_eval_rational(): | |
p = legendre_poly(4, x, polys=True) | |
roots = [r.eval_rational(n=18) for r in p.real_roots()] | |
for root in roots: | |
assert isinstance(root, Rational) | |
roots = [str(root.n(17)) for root in roots] | |
assert roots == [ | |
"-0.86113631159405258", | |
"-0.33998104358485626", | |
"0.33998104358485626", | |
"0.86113631159405258", | |
] | |
def test_CRootOf_lazy(): | |
# irreducible poly with both real and complex roots: | |
f = Poly(x**3 + 2*x + 2) | |
# real root: | |
CRootOf.clear_cache() | |
r = CRootOf(f, 0) | |
# Not yet in cache, after construction: | |
assert r.poly not in rootoftools._reals_cache | |
assert r.poly not in rootoftools._complexes_cache | |
r.evalf() | |
# In cache after evaluation: | |
assert r.poly in rootoftools._reals_cache | |
assert r.poly not in rootoftools._complexes_cache | |
# complex root: | |
CRootOf.clear_cache() | |
r = CRootOf(f, 1) | |
# Not yet in cache, after construction: | |
assert r.poly not in rootoftools._reals_cache | |
assert r.poly not in rootoftools._complexes_cache | |
r.evalf() | |
# In cache after evaluation: | |
assert r.poly in rootoftools._reals_cache | |
assert r.poly in rootoftools._complexes_cache | |
# composite poly with both real and complex roots: | |
f = Poly((x**2 - 2)*(x**2 + 1)) | |
# real root: | |
CRootOf.clear_cache() | |
r = CRootOf(f, 0) | |
# In cache immediately after construction: | |
assert r.poly in rootoftools._reals_cache | |
assert r.poly not in rootoftools._complexes_cache | |
# complex root: | |
CRootOf.clear_cache() | |
r = CRootOf(f, 2) | |
# In cache immediately after construction: | |
assert r.poly in rootoftools._reals_cache | |
assert r.poly in rootoftools._complexes_cache | |
def test_RootSum___new__(): | |
f = x**3 + x + 3 | |
g = Lambda(r, log(r*x)) | |
s = RootSum(f, g) | |
assert isinstance(s, RootSum) is True | |
assert RootSum(f**2, g) == 2*RootSum(f, g) | |
assert RootSum((x - 7)*f**3, g) == log(7*x) + 3*RootSum(f, g) | |
# issue 5571 | |
assert hash(RootSum((x - 7)*f**3, g)) == hash(log(7*x) + 3*RootSum(f, g)) | |
raises(MultivariatePolynomialError, lambda: RootSum(x**3 + x + y)) | |
raises(ValueError, lambda: RootSum(x**2 + 3, lambda x: x)) | |
assert RootSum(f, exp) == RootSum(f, Lambda(x, exp(x))) | |
assert RootSum(f, log) == RootSum(f, Lambda(x, log(x))) | |
assert isinstance(RootSum(f, auto=False), RootSum) is True | |
assert RootSum(f) == 0 | |
assert RootSum(f, Lambda(x, x)) == 0 | |
assert RootSum(f, Lambda(x, x**2)) == -2 | |
assert RootSum(f, Lambda(x, 1)) == 3 | |
assert RootSum(f, Lambda(x, 2)) == 6 | |
assert RootSum(f, auto=False).is_commutative is True | |
assert RootSum(f, Lambda(x, 1/(x + x**2))) == Rational(11, 3) | |
assert RootSum(f, Lambda(x, y/(x + x**2))) == Rational(11, 3)*y | |
assert RootSum(x**2 - 1, Lambda(x, 3*x**2), x) == 6 | |
assert RootSum(x**2 - y, Lambda(x, 3*x**2), x) == 6*y | |
assert RootSum(x**2 - 1, Lambda(x, z*x**2), x) == 2*z | |
assert RootSum(x**2 - y, Lambda(x, z*x**2), x) == 2*z*y | |
assert RootSum( | |
x**2 - 1, Lambda(x, exp(x)), quadratic=True) == exp(-1) + exp(1) | |
assert RootSum(x**3 + a*x + a**3, tan, x) == \ | |
RootSum(x**3 + x + 1, Lambda(x, tan(a*x))) | |
assert RootSum(a**3*x**3 + a*x + 1, tan, x) == \ | |
RootSum(x**3 + x + 1, Lambda(x, tan(x/a))) | |
def test_RootSum_free_symbols(): | |
assert RootSum(x**3 + x + 3, Lambda(r, exp(r))).free_symbols == set() | |
assert RootSum(x**3 + x + 3, Lambda(r, exp(a*r))).free_symbols == {a} | |
assert RootSum( | |
x**3 + x + y, Lambda(r, exp(a*r)), x).free_symbols == {a, y} | |
def test_RootSum___eq__(): | |
f = Lambda(x, exp(x)) | |
assert (RootSum(x**3 + x + 1, f) == RootSum(x**3 + x + 1, f)) is True | |
assert (RootSum(x**3 + x + 1, f) == RootSum(y**3 + y + 1, f)) is True | |
assert (RootSum(x**3 + x + 1, f) == RootSum(x**3 + x + 2, f)) is False | |
assert (RootSum(x**3 + x + 1, f) == RootSum(y**3 + y + 2, f)) is False | |
def test_RootSum_doit(): | |
rs = RootSum(x**2 + 1, exp) | |
assert isinstance(rs, RootSum) is True | |
assert rs.doit() == exp(-I) + exp(I) | |
rs = RootSum(x**2 + a, exp, x) | |
assert isinstance(rs, RootSum) is True | |
assert rs.doit() == exp(-sqrt(-a)) + exp(sqrt(-a)) | |
def test_RootSum_evalf(): | |
rs = RootSum(x**2 + 1, exp) | |
assert rs.evalf(n=20, chop=True).epsilon_eq(Float("1.0806046117362794348")) | |
assert rs.evalf(n=15, chop=True).epsilon_eq(Float("1.08060461173628")) | |
rs = RootSum(x**2 + a, exp, x) | |
assert rs.evalf() == rs | |
def test_RootSum_diff(): | |
f = x**3 + x + 3 | |
g = Lambda(r, exp(r*x)) | |
h = Lambda(r, r*exp(r*x)) | |
assert RootSum(f, g).diff(x) == RootSum(f, h) | |
def test_RootSum_subs(): | |
f = x**3 + x + 3 | |
g = Lambda(r, exp(r*x)) | |
F = y**3 + y + 3 | |
G = Lambda(r, exp(r*y)) | |
assert RootSum(f, g).subs(y, 1) == RootSum(f, g) | |
assert RootSum(f, g).subs(x, y) == RootSum(F, G) | |
def test_RootSum_rational(): | |
assert RootSum( | |
z**5 - z + 1, Lambda(z, z/(x - z))) == (4*x - 5)/(x**5 - x + 1) | |
f = 161*z**3 + 115*z**2 + 19*z + 1 | |
g = Lambda(z, z*log( | |
-3381*z**4/4 - 3381*z**3/4 - 625*z**2/2 - z*Rational(125, 2) - 5 + exp(x))) | |
assert RootSum(f, g).diff(x) == -( | |
(5*exp(2*x) - 6*exp(x) + 4)*exp(x)/(exp(3*x) - exp(2*x) + 1))/7 | |
def test_RootSum_independent(): | |
f = (x**3 - a)**2*(x**4 - b)**3 | |
g = Lambda(x, 5*tan(x) + 7) | |
h = Lambda(x, tan(x)) | |
r0 = RootSum(x**3 - a, h, x) | |
r1 = RootSum(x**4 - b, h, x) | |
assert RootSum(f, g, x).as_ordered_terms() == [10*r0, 15*r1, 126] | |
def test_issue_7876(): | |
l1 = Poly(x**6 - x + 1, x).all_roots() | |
l2 = [rootof(x**6 - x + 1, i) for i in range(6)] | |
assert frozenset(l1) == frozenset(l2) | |
def test_issue_8316(): | |
f = Poly(7*x**8 - 9) | |
assert len(f.all_roots()) == 8 | |
f = Poly(7*x**8 - 10) | |
assert len(f.all_roots()) == 8 | |
def test__imag_count(): | |
from sympy.polys.rootoftools import _imag_count_of_factor | |
def imag_count(p): | |
return sum(_imag_count_of_factor(f)*m for f, m in | |
p.factor_list()[1]) | |
assert imag_count(Poly(x**6 + 10*x**2 + 1)) == 2 | |
assert imag_count(Poly(x**2)) == 0 | |
assert imag_count(Poly([1]*3 + [-1], x)) == 0 | |
assert imag_count(Poly(x**3 + 1)) == 0 | |
assert imag_count(Poly(x**2 + 1)) == 2 | |
assert imag_count(Poly(x**2 - 1)) == 0 | |
assert imag_count(Poly(x**4 - 1)) == 2 | |
assert imag_count(Poly(x**4 + 1)) == 0 | |
assert imag_count(Poly([1, 2, 3], x)) == 0 | |
assert imag_count(Poly(x**3 + x + 1)) == 0 | |
assert imag_count(Poly(x**4 + x + 1)) == 0 | |
def q(r1, r2, p): | |
return Poly(((x - r1)*(x - r2)).subs(x, x**p), x) | |
assert imag_count(q(-1, -2, 2)) == 4 | |
assert imag_count(q(-1, 2, 2)) == 2 | |
assert imag_count(q(1, 2, 2)) == 0 | |
assert imag_count(q(1, 2, 4)) == 4 | |
assert imag_count(q(-1, 2, 4)) == 2 | |
assert imag_count(q(-1, -2, 4)) == 0 | |
def test_RootOf_is_imaginary(): | |
r = RootOf(x**4 + 4*x**2 + 1, 1) | |
i = r._get_interval() | |
assert r.is_imaginary and i.ax*i.bx <= 0 | |
def test_is_disjoint(): | |
eq = x**3 + 5*x + 1 | |
ir = rootof(eq, 0)._get_interval() | |
ii = rootof(eq, 1)._get_interval() | |
assert ir.is_disjoint(ii) | |
assert ii.is_disjoint(ir) | |
def test_pure_key_dict(): | |
p = D() | |
assert (x in p) is False | |
assert (1 in p) is False | |
p[x] = 1 | |
assert x in p | |
assert y in p | |
assert p[y] == 1 | |
raises(KeyError, lambda: p[1]) | |
def dont(k): | |
p[k] = 2 | |
raises(ValueError, lambda: dont(1)) | |
def test_eval_approx_relative(): | |
CRootOf.clear_cache() | |
t = [CRootOf(x**3 + 10*x + 1, i) for i in range(3)] | |
assert [i.eval_rational(1e-1) for i in t] == [ | |
Rational(-21, 220), Rational(15, 256) - I*805/256, | |
Rational(15, 256) + I*805/256] | |
t[0]._reset() | |
assert [i.eval_rational(1e-1, 1e-4) for i in t] == [ | |
Rational(-21, 220), Rational(3275, 65536) - I*414645/131072, | |
Rational(3275, 65536) + I*414645/131072] | |
assert S(t[0]._get_interval().dx) < 1e-1 | |
assert S(t[1]._get_interval().dx) < 1e-1 | |
assert S(t[1]._get_interval().dy) < 1e-4 | |
assert S(t[2]._get_interval().dx) < 1e-1 | |
assert S(t[2]._get_interval().dy) < 1e-4 | |
t[0]._reset() | |
assert [i.eval_rational(1e-4, 1e-4) for i in t] == [ | |
Rational(-2001, 20020), Rational(6545, 131072) - I*414645/131072, | |
Rational(6545, 131072) + I*414645/131072] | |
assert S(t[0]._get_interval().dx) < 1e-4 | |
assert S(t[1]._get_interval().dx) < 1e-4 | |
assert S(t[1]._get_interval().dy) < 1e-4 | |
assert S(t[2]._get_interval().dx) < 1e-4 | |
assert S(t[2]._get_interval().dy) < 1e-4 | |
# in the following, the actual relative precision is | |
# less than tested, but it should never be greater | |
t[0]._reset() | |
assert [i.eval_rational(n=2) for i in t] == [ | |
Rational(-202201, 2024022), Rational(104755, 2097152) - I*6634255/2097152, | |
Rational(104755, 2097152) + I*6634255/2097152] | |
assert abs(S(t[0]._get_interval().dx)/t[0]) < 1e-2 | |
assert abs(S(t[1]._get_interval().dx)/t[1]).n() < 1e-2 | |
assert abs(S(t[1]._get_interval().dy)/t[1]).n() < 1e-2 | |
assert abs(S(t[2]._get_interval().dx)/t[2]).n() < 1e-2 | |
assert abs(S(t[2]._get_interval().dy)/t[2]).n() < 1e-2 | |
t[0]._reset() | |
assert [i.eval_rational(n=3) for i in t] == [ | |
Rational(-202201, 2024022), Rational(1676045, 33554432) - I*106148135/33554432, | |
Rational(1676045, 33554432) + I*106148135/33554432] | |
assert abs(S(t[0]._get_interval().dx)/t[0]) < 1e-3 | |
assert abs(S(t[1]._get_interval().dx)/t[1]).n() < 1e-3 | |
assert abs(S(t[1]._get_interval().dy)/t[1]).n() < 1e-3 | |
assert abs(S(t[2]._get_interval().dx)/t[2]).n() < 1e-3 | |
assert abs(S(t[2]._get_interval().dy)/t[2]).n() < 1e-3 | |
t[0]._reset() | |
a = [i.eval_approx(2) for i in t] | |
assert [str(i) for i in a] == [ | |
'-0.10', '0.05 - 3.2*I', '0.05 + 3.2*I'] | |
assert all(abs(((a[i] - t[i])/t[i]).n()) < 1e-2 for i in range(len(a))) | |
def test_issue_15920(): | |
r = rootof(x**5 - x + 1, 0) | |
p = Integral(x, (x, 1, y)) | |
assert unchanged(Eq, r, p) | |
def test_issue_19113(): | |
eq = y**3 - y + 1 | |
# generator is a canonical x in RootOf | |
assert str(Poly(eq).real_roots()) == '[CRootOf(x**3 - x + 1, 0)]' | |
assert str(Poly(eq.subs(y, tan(y))).real_roots() | |
) == '[CRootOf(x**3 - x + 1, 0)]' | |
assert str(Poly(eq.subs(y, tan(x))).real_roots() | |
) == '[CRootOf(x**3 - x + 1, 0)]' | |