File size: 21,916 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
"""Tests for the implementation of RootOf class and related tools. """

from sympy.polys.polytools import Poly
import sympy.polys.rootoftools as rootoftools
from sympy.polys.rootoftools import (rootof, RootOf, CRootOf, RootSum,
    _pure_key_dict as D)

from sympy.polys.polyerrors import (
    MultivariatePolynomialError,
    GeneratorsNeeded,
    PolynomialError,
)

from sympy.core.function import (Function, Lambda)
from sympy.core.numbers import (Float, I, Rational)
from sympy.core.relational import Eq
from sympy.core.singleton import S
from sympy.functions.elementary.exponential import (exp, log)
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import tan
from sympy.integrals.integrals import Integral
from sympy.polys.orthopolys import legendre_poly
from sympy.solvers.solvers import solve


from sympy.testing.pytest import raises, slow
from sympy.core.expr import unchanged

from sympy.abc import a, b, x, y, z, r


def test_CRootOf___new__():
    assert rootof(x, 0) == 0
    assert rootof(x, -1) == 0

    assert rootof(x, S.Zero) == 0

    assert rootof(x - 1, 0) == 1
    assert rootof(x - 1, -1) == 1

    assert rootof(x + 1, 0) == -1
    assert rootof(x + 1, -1) == -1

    assert rootof(x**2 + 2*x + 3, 0) == -1 - I*sqrt(2)
    assert rootof(x**2 + 2*x + 3, 1) == -1 + I*sqrt(2)
    assert rootof(x**2 + 2*x + 3, -1) == -1 + I*sqrt(2)
    assert rootof(x**2 + 2*x + 3, -2) == -1 - I*sqrt(2)

    r = rootof(x**2 + 2*x + 3, 0, radicals=False)
    assert isinstance(r, RootOf) is True

    r = rootof(x**2 + 2*x + 3, 1, radicals=False)
    assert isinstance(r, RootOf) is True

    r = rootof(x**2 + 2*x + 3, -1, radicals=False)
    assert isinstance(r, RootOf) is True

    r = rootof(x**2 + 2*x + 3, -2, radicals=False)
    assert isinstance(r, RootOf) is True

    assert rootof((x - 1)*(x + 1), 0, radicals=False) == -1
    assert rootof((x - 1)*(x + 1), 1, radicals=False) == 1
    assert rootof((x - 1)*(x + 1), -1, radicals=False) == 1
    assert rootof((x - 1)*(x + 1), -2, radicals=False) == -1

    assert rootof((x - 1)*(x + 1), 0, radicals=True) == -1
    assert rootof((x - 1)*(x + 1), 1, radicals=True) == 1
    assert rootof((x - 1)*(x + 1), -1, radicals=True) == 1
    assert rootof((x - 1)*(x + 1), -2, radicals=True) == -1

    assert rootof((x - 1)*(x**3 + x + 3), 0) == rootof(x**3 + x + 3, 0)
    assert rootof((x - 1)*(x**3 + x + 3), 1) == 1
    assert rootof((x - 1)*(x**3 + x + 3), 2) == rootof(x**3 + x + 3, 1)
    assert rootof((x - 1)*(x**3 + x + 3), 3) == rootof(x**3 + x + 3, 2)
    assert rootof((x - 1)*(x**3 + x + 3), -1) == rootof(x**3 + x + 3, 2)
    assert rootof((x - 1)*(x**3 + x + 3), -2) == rootof(x**3 + x + 3, 1)
    assert rootof((x - 1)*(x**3 + x + 3), -3) == 1
    assert rootof((x - 1)*(x**3 + x + 3), -4) == rootof(x**3 + x + 3, 0)

    assert rootof(x**4 + 3*x**3, 0) == -3
    assert rootof(x**4 + 3*x**3, 1) == 0
    assert rootof(x**4 + 3*x**3, 2) == 0
    assert rootof(x**4 + 3*x**3, 3) == 0

    raises(GeneratorsNeeded, lambda: rootof(0, 0))
    raises(GeneratorsNeeded, lambda: rootof(1, 0))

    raises(PolynomialError, lambda: rootof(Poly(0, x), 0))
    raises(PolynomialError, lambda: rootof(Poly(1, x), 0))
    raises(PolynomialError, lambda: rootof(x - y, 0))
    # issue 8617
    raises(PolynomialError, lambda: rootof(exp(x), 0))

    raises(NotImplementedError, lambda: rootof(x**3 - x + sqrt(2), 0))
    raises(NotImplementedError, lambda: rootof(x**3 - x + I, 0))

    raises(IndexError, lambda: rootof(x**2 - 1, -4))
    raises(IndexError, lambda: rootof(x**2 - 1, -3))
    raises(IndexError, lambda: rootof(x**2 - 1, 2))
    raises(IndexError, lambda: rootof(x**2 - 1, 3))
    raises(ValueError, lambda: rootof(x**2 - 1, x))

    assert rootof(Poly(x - y, x), 0) == y

    assert rootof(Poly(x**2 - y, x), 0) == -sqrt(y)
    assert rootof(Poly(x**2 - y, x), 1) == sqrt(y)

    assert rootof(Poly(x**3 - y, x), 0) == y**Rational(1, 3)

    assert rootof(y*x**3 + y*x + 2*y, x, 0) == -1
    raises(NotImplementedError, lambda: rootof(x**3 + x + 2*y, x, 0))

    assert rootof(x**3 + x + 1, 0).is_commutative is True


def test_CRootOf_attributes():
    r = rootof(x**3 + x + 3, 0)
    assert r.is_number
    assert r.free_symbols == set()
    # if the following assertion fails then multivariate polynomials
    # are apparently supported and the RootOf.free_symbols routine
    # should be changed to return whatever symbols would not be
    # the PurePoly dummy symbol
    raises(NotImplementedError, lambda: rootof(Poly(x**3 + y*x + 1, x), 0))


def test_CRootOf___eq__():
    assert (rootof(x**3 + x + 3, 0) == rootof(x**3 + x + 3, 0)) is True
    assert (rootof(x**3 + x + 3, 0) == rootof(x**3 + x + 3, 1)) is False
    assert (rootof(x**3 + x + 3, 1) == rootof(x**3 + x + 3, 1)) is True
    assert (rootof(x**3 + x + 3, 1) == rootof(x**3 + x + 3, 2)) is False
    assert (rootof(x**3 + x + 3, 2) == rootof(x**3 + x + 3, 2)) is True

    assert (rootof(x**3 + x + 3, 0) == rootof(y**3 + y + 3, 0)) is True
    assert (rootof(x**3 + x + 3, 0) == rootof(y**3 + y + 3, 1)) is False
    assert (rootof(x**3 + x + 3, 1) == rootof(y**3 + y + 3, 1)) is True
    assert (rootof(x**3 + x + 3, 1) == rootof(y**3 + y + 3, 2)) is False
    assert (rootof(x**3 + x + 3, 2) == rootof(y**3 + y + 3, 2)) is True


def test_CRootOf___eval_Eq__():
    f = Function('f')
    eq = x**3 + x + 3
    r = rootof(eq, 2)
    r1 = rootof(eq, 1)
    assert Eq(r, r1) is S.false
    assert Eq(r, r) is S.true
    assert unchanged(Eq, r, x)
    assert Eq(r, 0) is S.false
    assert Eq(r, S.Infinity) is S.false
    assert Eq(r, I) is S.false
    assert unchanged(Eq, r, f(0))
    sol = solve(eq)
    for s in sol:
        if s.is_real:
            assert Eq(r, s) is S.false
    r = rootof(eq, 0)
    for s in sol:
        if s.is_real:
            assert Eq(r, s) is S.true
    eq = x**3 + x + 1
    sol = solve(eq)
    assert [Eq(rootof(eq, i), j) for i in range(3) for j in sol
        ].count(True) == 3
    assert Eq(rootof(eq, 0), 1 + S.ImaginaryUnit) == False


def test_CRootOf_is_real():
    assert rootof(x**3 + x + 3, 0).is_real is True
    assert rootof(x**3 + x + 3, 1).is_real is False
    assert rootof(x**3 + x + 3, 2).is_real is False


def test_CRootOf_is_complex():
    assert rootof(x**3 + x + 3, 0).is_complex is True


def test_CRootOf_subs():
    assert rootof(x**3 + x + 1, 0).subs(x, y) == rootof(y**3 + y + 1, 0)


def test_CRootOf_diff():
    assert rootof(x**3 + x + 1, 0).diff(x) == 0
    assert rootof(x**3 + x + 1, 0).diff(y) == 0


@slow
def test_CRootOf_evalf():
    real = rootof(x**3 + x + 3, 0).evalf(n=20)

    assert real.epsilon_eq(Float("-1.2134116627622296341"))

    re, im = rootof(x**3 + x + 3, 1).evalf(n=20).as_real_imag()

    assert re.epsilon_eq( Float("0.60670583138111481707"))
    assert im.epsilon_eq(-Float("1.45061224918844152650"))

    re, im = rootof(x**3 + x + 3, 2).evalf(n=20).as_real_imag()

    assert re.epsilon_eq(Float("0.60670583138111481707"))
    assert im.epsilon_eq(Float("1.45061224918844152650"))

    p = legendre_poly(4, x, polys=True)
    roots = [str(r.n(17)) for r in p.real_roots()]
    # magnitudes are given by
    # sqrt(3/S(7) - 2*sqrt(6/S(5))/7)
    #   and
    # sqrt(3/S(7) + 2*sqrt(6/S(5))/7)
    assert roots == [
            "-0.86113631159405258",
            "-0.33998104358485626",
             "0.33998104358485626",
             "0.86113631159405258",
             ]

    re = rootof(x**5 - 5*x + 12, 0).evalf(n=20)
    assert re.epsilon_eq(Float("-1.84208596619025438271"))

    re, im = rootof(x**5 - 5*x + 12, 1).evalf(n=20).as_real_imag()
    assert re.epsilon_eq(Float("-0.351854240827371999559"))
    assert im.epsilon_eq(Float("-1.709561043370328882010"))

    re, im = rootof(x**5 - 5*x + 12, 2).evalf(n=20).as_real_imag()
    assert re.epsilon_eq(Float("-0.351854240827371999559"))
    assert im.epsilon_eq(Float("+1.709561043370328882010"))

    re, im = rootof(x**5 - 5*x + 12, 3).evalf(n=20).as_real_imag()
    assert re.epsilon_eq(Float("+1.272897223922499190910"))
    assert im.epsilon_eq(Float("-0.719798681483861386681"))

    re, im = rootof(x**5 - 5*x + 12, 4).evalf(n=20).as_real_imag()
    assert re.epsilon_eq(Float("+1.272897223922499190910"))
    assert im.epsilon_eq(Float("+0.719798681483861386681"))

    # issue 6393
    assert str(rootof(x**5 + 2*x**4 + x**3 - 68719476736, 0).n(3)) == '147.'
    eq = (531441*x**11 + 3857868*x**10 + 13730229*x**9 + 32597882*x**8 +
        55077472*x**7 + 60452000*x**6 + 32172064*x**5 - 4383808*x**4 -
        11942912*x**3 - 1506304*x**2 + 1453312*x + 512)
    a, b = rootof(eq, 1).n(2).as_real_imag()
    c, d = rootof(eq, 2).n(2).as_real_imag()
    assert a == c
    assert b < d
    assert b == -d
    # issue 6451
    r = rootof(legendre_poly(64, x), 7)
    assert r.n(2) == r.n(100).n(2)
    # issue 9019
    r0 = rootof(x**2 + 1, 0, radicals=False)
    r1 = rootof(x**2 + 1, 1, radicals=False)
    assert r0.n(4) == Float(-1.0, 4) * I
    assert r1.n(4) == Float(1.0, 4) * I

    # make sure verification is used in case a max/min traps the "root"
    assert str(rootof(4*x**5 + 16*x**3 + 12*x**2 + 7, 0).n(3)) == '-0.976'

    # watch out for UnboundLocalError
    c = CRootOf(90720*x**6 - 4032*x**4 + 84*x**2 - 1, 0)
    assert c._eval_evalf(2)  # doesn't fail

    # watch out for imaginary parts that don't want to evaluate
    assert str(RootOf(x**16 + 32*x**14 + 508*x**12 + 5440*x**10 +
        39510*x**8 + 204320*x**6 + 755548*x**4 + 1434496*x**2 +
        877969, 10).n(2)) == '-3.4*I'
    assert abs(RootOf(x**4 + 10*x**2 + 1, 0).n(2)) < 0.4

    # check reset and args
    r = [RootOf(x**3 + x + 3, i) for i in range(3)]
    r[0]._reset()
    for ri in r:
        i = ri._get_interval()
        ri.n(2)
        assert i != ri._get_interval()
        ri._reset()
        assert i == ri._get_interval()
        assert i == i.func(*i.args)


def test_issue_24978():
    # Irreducible poly with negative leading coeff is normalized
    # (factor of -1 is extracted), before being stored as CRootOf.poly.
    f = -x**2 + 2
    r = CRootOf(f, 0)
    assert r.poly.as_expr() == x**2 - 2
    # An action that prompts calculation of an interval puts r.poly in
    # the cache.
    r.n()
    assert r.poly in rootoftools._reals_cache


def test_CRootOf_evalf_caching_bug():
    r = rootof(x**5 - 5*x + 12, 1)
    r.n()
    a = r._get_interval()
    r = rootof(x**5 - 5*x + 12, 1)
    r.n()
    b = r._get_interval()
    assert a == b


def test_CRootOf_real_roots():
    assert Poly(x**5 + x + 1).real_roots() == [rootof(x**3 - x**2 + 1, 0)]
    assert Poly(x**5 + x + 1).real_roots(radicals=False) == [rootof(
        x**3 - x**2 + 1, 0)]

    # https://github.com/sympy/sympy/issues/20902
    p = Poly(-3*x**4 - 10*x**3 - 12*x**2 - 6*x - 1, x, domain='ZZ')
    assert CRootOf.real_roots(p) == [S(-1), S(-1), S(-1), S(-1)/3]


def test_CRootOf_all_roots():
    assert Poly(x**5 + x + 1).all_roots() == [
        rootof(x**3 - x**2 + 1, 0),
        Rational(-1, 2) - sqrt(3)*I/2,
        Rational(-1, 2) + sqrt(3)*I/2,
        rootof(x**3 - x**2 + 1, 1),
        rootof(x**3 - x**2 + 1, 2),
    ]

    assert Poly(x**5 + x + 1).all_roots(radicals=False) == [
        rootof(x**3 - x**2 + 1, 0),
        rootof(x**2 + x + 1, 0, radicals=False),
        rootof(x**2 + x + 1, 1, radicals=False),
        rootof(x**3 - x**2 + 1, 1),
        rootof(x**3 - x**2 + 1, 2),
    ]


def test_CRootOf_eval_rational():
    p = legendre_poly(4, x, polys=True)
    roots = [r.eval_rational(n=18) for r in p.real_roots()]
    for root in roots:
        assert isinstance(root, Rational)
    roots = [str(root.n(17)) for root in roots]
    assert roots == [
            "-0.86113631159405258",
            "-0.33998104358485626",
             "0.33998104358485626",
             "0.86113631159405258",
             ]


def test_CRootOf_lazy():
    # irreducible poly with both real and complex roots:
    f = Poly(x**3 + 2*x + 2)

    # real root:
    CRootOf.clear_cache()
    r = CRootOf(f, 0)
    # Not yet in cache, after construction:
    assert r.poly not in rootoftools._reals_cache
    assert r.poly not in rootoftools._complexes_cache
    r.evalf()
    # In cache after evaluation:
    assert r.poly in rootoftools._reals_cache
    assert r.poly not in rootoftools._complexes_cache

    # complex root:
    CRootOf.clear_cache()
    r = CRootOf(f, 1)
    # Not yet in cache, after construction:
    assert r.poly not in rootoftools._reals_cache
    assert r.poly not in rootoftools._complexes_cache
    r.evalf()
    # In cache after evaluation:
    assert r.poly in rootoftools._reals_cache
    assert r.poly in rootoftools._complexes_cache

    # composite poly with both real and complex roots:
    f = Poly((x**2 - 2)*(x**2 + 1))

    # real root:
    CRootOf.clear_cache()
    r = CRootOf(f, 0)
    # In cache immediately after construction:
    assert r.poly in rootoftools._reals_cache
    assert r.poly not in rootoftools._complexes_cache

    # complex root:
    CRootOf.clear_cache()
    r = CRootOf(f, 2)
    # In cache immediately after construction:
    assert r.poly in rootoftools._reals_cache
    assert r.poly in rootoftools._complexes_cache


def test_RootSum___new__():
    f = x**3 + x + 3

    g = Lambda(r, log(r*x))
    s = RootSum(f, g)

    assert isinstance(s, RootSum) is True

    assert RootSum(f**2, g) == 2*RootSum(f, g)
    assert RootSum((x - 7)*f**3, g) == log(7*x) + 3*RootSum(f, g)

    # issue 5571
    assert hash(RootSum((x - 7)*f**3, g)) == hash(log(7*x) + 3*RootSum(f, g))

    raises(MultivariatePolynomialError, lambda: RootSum(x**3 + x + y))
    raises(ValueError, lambda: RootSum(x**2 + 3, lambda x: x))

    assert RootSum(f, exp) == RootSum(f, Lambda(x, exp(x)))
    assert RootSum(f, log) == RootSum(f, Lambda(x, log(x)))

    assert isinstance(RootSum(f, auto=False), RootSum) is True

    assert RootSum(f) == 0
    assert RootSum(f, Lambda(x, x)) == 0
    assert RootSum(f, Lambda(x, x**2)) == -2

    assert RootSum(f, Lambda(x, 1)) == 3
    assert RootSum(f, Lambda(x, 2)) == 6

    assert RootSum(f, auto=False).is_commutative is True

    assert RootSum(f, Lambda(x, 1/(x + x**2))) == Rational(11, 3)
    assert RootSum(f, Lambda(x, y/(x + x**2))) == Rational(11, 3)*y

    assert RootSum(x**2 - 1, Lambda(x, 3*x**2), x) == 6
    assert RootSum(x**2 - y, Lambda(x, 3*x**2), x) == 6*y

    assert RootSum(x**2 - 1, Lambda(x, z*x**2), x) == 2*z
    assert RootSum(x**2 - y, Lambda(x, z*x**2), x) == 2*z*y

    assert RootSum(
        x**2 - 1, Lambda(x, exp(x)), quadratic=True) == exp(-1) + exp(1)

    assert RootSum(x**3 + a*x + a**3, tan, x) == \
        RootSum(x**3 + x + 1, Lambda(x, tan(a*x)))
    assert RootSum(a**3*x**3 + a*x + 1, tan, x) == \
        RootSum(x**3 + x + 1, Lambda(x, tan(x/a)))


def test_RootSum_free_symbols():
    assert RootSum(x**3 + x + 3, Lambda(r, exp(r))).free_symbols == set()
    assert RootSum(x**3 + x + 3, Lambda(r, exp(a*r))).free_symbols == {a}
    assert RootSum(
        x**3 + x + y, Lambda(r, exp(a*r)), x).free_symbols == {a, y}


def test_RootSum___eq__():
    f = Lambda(x, exp(x))

    assert (RootSum(x**3 + x + 1, f) == RootSum(x**3 + x + 1, f)) is True
    assert (RootSum(x**3 + x + 1, f) == RootSum(y**3 + y + 1, f)) is True

    assert (RootSum(x**3 + x + 1, f) == RootSum(x**3 + x + 2, f)) is False
    assert (RootSum(x**3 + x + 1, f) == RootSum(y**3 + y + 2, f)) is False


def test_RootSum_doit():
    rs = RootSum(x**2 + 1, exp)

    assert isinstance(rs, RootSum) is True
    assert rs.doit() == exp(-I) + exp(I)

    rs = RootSum(x**2 + a, exp, x)

    assert isinstance(rs, RootSum) is True
    assert rs.doit() == exp(-sqrt(-a)) + exp(sqrt(-a))


def test_RootSum_evalf():
    rs = RootSum(x**2 + 1, exp)

    assert rs.evalf(n=20, chop=True).epsilon_eq(Float("1.0806046117362794348"))
    assert rs.evalf(n=15, chop=True).epsilon_eq(Float("1.08060461173628"))

    rs = RootSum(x**2 + a, exp, x)

    assert rs.evalf() == rs


def test_RootSum_diff():
    f = x**3 + x + 3

    g = Lambda(r, exp(r*x))
    h = Lambda(r, r*exp(r*x))

    assert RootSum(f, g).diff(x) == RootSum(f, h)


def test_RootSum_subs():
    f = x**3 + x + 3
    g = Lambda(r, exp(r*x))

    F = y**3 + y + 3
    G = Lambda(r, exp(r*y))

    assert RootSum(f, g).subs(y, 1) == RootSum(f, g)
    assert RootSum(f, g).subs(x, y) == RootSum(F, G)


def test_RootSum_rational():
    assert RootSum(
        z**5 - z + 1, Lambda(z, z/(x - z))) == (4*x - 5)/(x**5 - x + 1)

    f = 161*z**3 + 115*z**2 + 19*z + 1
    g = Lambda(z, z*log(
        -3381*z**4/4 - 3381*z**3/4 - 625*z**2/2 - z*Rational(125, 2) - 5 + exp(x)))

    assert RootSum(f, g).diff(x) == -(
        (5*exp(2*x) - 6*exp(x) + 4)*exp(x)/(exp(3*x) - exp(2*x) + 1))/7


def test_RootSum_independent():
    f = (x**3 - a)**2*(x**4 - b)**3

    g = Lambda(x, 5*tan(x) + 7)
    h = Lambda(x, tan(x))

    r0 = RootSum(x**3 - a, h, x)
    r1 = RootSum(x**4 - b, h, x)

    assert RootSum(f, g, x).as_ordered_terms() == [10*r0, 15*r1, 126]


def test_issue_7876():
    l1 = Poly(x**6 - x + 1, x).all_roots()
    l2 = [rootof(x**6 - x + 1, i) for i in range(6)]
    assert frozenset(l1) == frozenset(l2)


def test_issue_8316():
    f = Poly(7*x**8 - 9)
    assert len(f.all_roots()) == 8
    f = Poly(7*x**8 - 10)
    assert len(f.all_roots()) == 8


def test__imag_count():
    from sympy.polys.rootoftools import _imag_count_of_factor
    def imag_count(p):
        return sum(_imag_count_of_factor(f)*m for f, m in
        p.factor_list()[1])
    assert imag_count(Poly(x**6 + 10*x**2 + 1)) == 2
    assert imag_count(Poly(x**2)) == 0
    assert imag_count(Poly([1]*3 + [-1], x)) == 0
    assert imag_count(Poly(x**3 + 1)) == 0
    assert imag_count(Poly(x**2 + 1)) == 2
    assert imag_count(Poly(x**2 - 1)) == 0
    assert imag_count(Poly(x**4 - 1)) == 2
    assert imag_count(Poly(x**4 + 1)) == 0
    assert imag_count(Poly([1, 2, 3], x)) == 0
    assert imag_count(Poly(x**3 + x + 1)) == 0
    assert imag_count(Poly(x**4 + x + 1)) == 0
    def q(r1, r2, p):
        return Poly(((x - r1)*(x - r2)).subs(x, x**p), x)
    assert imag_count(q(-1, -2, 2)) == 4
    assert imag_count(q(-1, 2, 2)) == 2
    assert imag_count(q(1, 2, 2)) == 0
    assert imag_count(q(1, 2, 4)) == 4
    assert imag_count(q(-1, 2, 4)) == 2
    assert imag_count(q(-1, -2, 4)) == 0


def test_RootOf_is_imaginary():
    r = RootOf(x**4 + 4*x**2 + 1, 1)
    i = r._get_interval()
    assert r.is_imaginary and i.ax*i.bx <= 0


def test_is_disjoint():
    eq = x**3 + 5*x + 1
    ir = rootof(eq, 0)._get_interval()
    ii = rootof(eq, 1)._get_interval()
    assert ir.is_disjoint(ii)
    assert ii.is_disjoint(ir)


def test_pure_key_dict():
    p = D()
    assert (x in p) is False
    assert (1 in p) is False
    p[x] = 1
    assert x in p
    assert y in p
    assert p[y] == 1
    raises(KeyError, lambda: p[1])
    def dont(k):
        p[k] = 2
    raises(ValueError, lambda: dont(1))


@slow
def test_eval_approx_relative():
    CRootOf.clear_cache()
    t = [CRootOf(x**3 + 10*x + 1, i) for i in range(3)]
    assert [i.eval_rational(1e-1) for i in t] == [
        Rational(-21, 220), Rational(15, 256) - I*805/256,
        Rational(15, 256) + I*805/256]
    t[0]._reset()
    assert [i.eval_rational(1e-1, 1e-4) for i in t] == [
        Rational(-21, 220), Rational(3275, 65536) - I*414645/131072,
        Rational(3275, 65536) + I*414645/131072]
    assert S(t[0]._get_interval().dx) < 1e-1
    assert S(t[1]._get_interval().dx) < 1e-1
    assert S(t[1]._get_interval().dy) < 1e-4
    assert S(t[2]._get_interval().dx) < 1e-1
    assert S(t[2]._get_interval().dy) < 1e-4
    t[0]._reset()
    assert [i.eval_rational(1e-4, 1e-4) for i in t] == [
        Rational(-2001, 20020), Rational(6545, 131072) - I*414645/131072,
        Rational(6545, 131072) + I*414645/131072]
    assert S(t[0]._get_interval().dx) < 1e-4
    assert S(t[1]._get_interval().dx) < 1e-4
    assert S(t[1]._get_interval().dy) < 1e-4
    assert S(t[2]._get_interval().dx) < 1e-4
    assert S(t[2]._get_interval().dy) < 1e-4
    # in the following, the actual relative precision is
    # less than tested, but it should never be greater
    t[0]._reset()
    assert [i.eval_rational(n=2) for i in t] == [
        Rational(-202201, 2024022), Rational(104755, 2097152) - I*6634255/2097152,
        Rational(104755, 2097152) + I*6634255/2097152]
    assert abs(S(t[0]._get_interval().dx)/t[0]) < 1e-2
    assert abs(S(t[1]._get_interval().dx)/t[1]).n() < 1e-2
    assert abs(S(t[1]._get_interval().dy)/t[1]).n() < 1e-2
    assert abs(S(t[2]._get_interval().dx)/t[2]).n() < 1e-2
    assert abs(S(t[2]._get_interval().dy)/t[2]).n() < 1e-2
    t[0]._reset()
    assert [i.eval_rational(n=3) for i in t] == [
        Rational(-202201, 2024022), Rational(1676045, 33554432) - I*106148135/33554432,
        Rational(1676045, 33554432) + I*106148135/33554432]
    assert abs(S(t[0]._get_interval().dx)/t[0]) < 1e-3
    assert abs(S(t[1]._get_interval().dx)/t[1]).n() < 1e-3
    assert abs(S(t[1]._get_interval().dy)/t[1]).n() < 1e-3
    assert abs(S(t[2]._get_interval().dx)/t[2]).n() < 1e-3
    assert abs(S(t[2]._get_interval().dy)/t[2]).n() < 1e-3

    t[0]._reset()
    a = [i.eval_approx(2) for i in t]
    assert [str(i) for i in a] == [
        '-0.10', '0.05 - 3.2*I', '0.05 + 3.2*I']
    assert all(abs(((a[i] - t[i])/t[i]).n()) < 1e-2 for i in range(len(a)))


def test_issue_15920():
    r = rootof(x**5 - x + 1, 0)
    p = Integral(x, (x, 1, y))
    assert unchanged(Eq, r, p)


def test_issue_19113():
    eq = y**3 - y + 1
    # generator is a canonical x in RootOf
    assert str(Poly(eq).real_roots()) == '[CRootOf(x**3 - x + 1, 0)]'
    assert str(Poly(eq.subs(y, tan(y))).real_roots()
        ) == '[CRootOf(x**3 - x + 1, 0)]'
    assert str(Poly(eq.subs(y, tan(x))).real_roots()
        ) == '[CRootOf(x**3 - x + 1, 0)]'