Spaces:
Running
Running
"""Useful utilities for higher level polynomial classes. """ | |
from __future__ import annotations | |
from sympy.external.gmpy import GROUND_TYPES | |
from sympy.core import (S, Add, Mul, Pow, Eq, Expr, | |
expand_mul, expand_multinomial) | |
from sympy.core.exprtools import decompose_power, decompose_power_rat | |
from sympy.core.numbers import _illegal | |
from sympy.polys.polyerrors import PolynomialError, GeneratorsError | |
from sympy.polys.polyoptions import build_options | |
import re | |
_gens_order = { | |
'a': 301, 'b': 302, 'c': 303, 'd': 304, | |
'e': 305, 'f': 306, 'g': 307, 'h': 308, | |
'i': 309, 'j': 310, 'k': 311, 'l': 312, | |
'm': 313, 'n': 314, 'o': 315, 'p': 216, | |
'q': 217, 'r': 218, 's': 219, 't': 220, | |
'u': 221, 'v': 222, 'w': 223, 'x': 124, | |
'y': 125, 'z': 126, | |
} | |
_max_order = 1000 | |
_re_gen = re.compile(r"^(.*?)(\d*)$", re.MULTILINE) | |
def _nsort(roots, separated=False): | |
"""Sort the numerical roots putting the real roots first, then sorting | |
according to real and imaginary parts. If ``separated`` is True, then | |
the real and imaginary roots will be returned in two lists, respectively. | |
This routine tries to avoid issue 6137 by separating the roots into real | |
and imaginary parts before evaluation. In addition, the sorting will raise | |
an error if any computation cannot be done with precision. | |
""" | |
if not all(r.is_number for r in roots): | |
raise NotImplementedError | |
# see issue 6137: | |
# get the real part of the evaluated real and imaginary parts of each root | |
key = [[i.n(2).as_real_imag()[0] for i in r.as_real_imag()] for r in roots] | |
# make sure the parts were computed with precision | |
if len(roots) > 1 and any(i._prec == 1 for k in key for i in k): | |
raise NotImplementedError("could not compute root with precision") | |
# insert a key to indicate if the root has an imaginary part | |
key = [(1 if i else 0, r, i) for r, i in key] | |
key = sorted(zip(key, roots)) | |
# return the real and imaginary roots separately if desired | |
if separated: | |
r = [] | |
i = [] | |
for (im, _, _), v in key: | |
if im: | |
i.append(v) | |
else: | |
r.append(v) | |
return r, i | |
_, roots = zip(*key) | |
return list(roots) | |
def _sort_gens(gens, **args): | |
"""Sort generators in a reasonably intelligent way. """ | |
opt = build_options(args) | |
gens_order, wrt = {}, None | |
if opt is not None: | |
gens_order, wrt = {}, opt.wrt | |
for i, gen in enumerate(opt.sort): | |
gens_order[gen] = i + 1 | |
def order_key(gen): | |
gen = str(gen) | |
if wrt is not None: | |
try: | |
return (-len(wrt) + wrt.index(gen), gen, 0) | |
except ValueError: | |
pass | |
name, index = _re_gen.match(gen).groups() | |
if index: | |
index = int(index) | |
else: | |
index = 0 | |
try: | |
return ( gens_order[name], name, index) | |
except KeyError: | |
pass | |
try: | |
return (_gens_order[name], name, index) | |
except KeyError: | |
pass | |
return (_max_order, name, index) | |
try: | |
gens = sorted(gens, key=order_key) | |
except TypeError: # pragma: no cover | |
pass | |
return tuple(gens) | |
def _unify_gens(f_gens, g_gens): | |
"""Unify generators in a reasonably intelligent way. """ | |
f_gens = list(f_gens) | |
g_gens = list(g_gens) | |
if f_gens == g_gens: | |
return tuple(f_gens) | |
gens, common, k = [], [], 0 | |
for gen in f_gens: | |
if gen in g_gens: | |
common.append(gen) | |
for i, gen in enumerate(g_gens): | |
if gen in common: | |
g_gens[i], k = common[k], k + 1 | |
for gen in common: | |
i = f_gens.index(gen) | |
gens.extend(f_gens[:i]) | |
f_gens = f_gens[i + 1:] | |
i = g_gens.index(gen) | |
gens.extend(g_gens[:i]) | |
g_gens = g_gens[i + 1:] | |
gens.append(gen) | |
gens.extend(f_gens) | |
gens.extend(g_gens) | |
return tuple(gens) | |
def _analyze_gens(gens): | |
"""Support for passing generators as `*gens` and `[gens]`. """ | |
if len(gens) == 1 and hasattr(gens[0], '__iter__'): | |
return tuple(gens[0]) | |
else: | |
return tuple(gens) | |
def _sort_factors(factors, **args): | |
"""Sort low-level factors in increasing 'complexity' order. """ | |
# XXX: GF(p) does not support comparisons so we need a key function to sort | |
# the factors if python-flint is being used. A better solution might be to | |
# add a sort key method to each domain. | |
def order_key(factor): | |
if isinstance(factor, _GF_types): | |
return int(factor) | |
elif isinstance(factor, list): | |
return [order_key(f) for f in factor] | |
else: | |
return factor | |
def order_if_multiple_key(factor): | |
(f, n) = factor | |
return (len(f), n, order_key(f)) | |
def order_no_multiple_key(f): | |
return (len(f), order_key(f)) | |
if args.get('multiple', True): | |
return sorted(factors, key=order_if_multiple_key) | |
else: | |
return sorted(factors, key=order_no_multiple_key) | |
illegal_types = [type(obj) for obj in _illegal] | |
finf = [float(i) for i in _illegal[1:3]] | |
def _not_a_coeff(expr): | |
"""Do not treat NaN and infinities as valid polynomial coefficients. """ | |
if type(expr) in illegal_types or expr in finf: | |
return True | |
if isinstance(expr, float) and float(expr) != expr: | |
return True # nan | |
return # could be | |
def _parallel_dict_from_expr_if_gens(exprs, opt): | |
"""Transform expressions into a multinomial form given generators. """ | |
k, indices = len(opt.gens), {} | |
for i, g in enumerate(opt.gens): | |
indices[g] = i | |
polys = [] | |
for expr in exprs: | |
poly = {} | |
if expr.is_Equality: | |
expr = expr.lhs - expr.rhs | |
for term in Add.make_args(expr): | |
coeff, monom = [], [0]*k | |
for factor in Mul.make_args(term): | |
if not _not_a_coeff(factor) and factor.is_Number: | |
coeff.append(factor) | |
else: | |
try: | |
if opt.series is False: | |
base, exp = decompose_power(factor) | |
if exp < 0: | |
exp, base = -exp, Pow(base, -S.One) | |
else: | |
base, exp = decompose_power_rat(factor) | |
monom[indices[base]] = exp | |
except KeyError: | |
if not factor.has_free(*opt.gens): | |
coeff.append(factor) | |
else: | |
raise PolynomialError("%s contains an element of " | |
"the set of generators." % factor) | |
monom = tuple(monom) | |
if monom in poly: | |
poly[monom] += Mul(*coeff) | |
else: | |
poly[monom] = Mul(*coeff) | |
polys.append(poly) | |
return polys, opt.gens | |
def _parallel_dict_from_expr_no_gens(exprs, opt): | |
"""Transform expressions into a multinomial form and figure out generators. """ | |
if opt.domain is not None: | |
def _is_coeff(factor): | |
return factor in opt.domain | |
elif opt.extension is True: | |
def _is_coeff(factor): | |
return factor.is_algebraic | |
elif opt.greedy is not False: | |
def _is_coeff(factor): | |
return factor is S.ImaginaryUnit | |
else: | |
def _is_coeff(factor): | |
return factor.is_number | |
gens, reprs = set(), [] | |
for expr in exprs: | |
terms = [] | |
if expr.is_Equality: | |
expr = expr.lhs - expr.rhs | |
for term in Add.make_args(expr): | |
coeff, elements = [], {} | |
for factor in Mul.make_args(term): | |
if not _not_a_coeff(factor) and (factor.is_Number or _is_coeff(factor)): | |
coeff.append(factor) | |
else: | |
if opt.series is False: | |
base, exp = decompose_power(factor) | |
if exp < 0: | |
exp, base = -exp, Pow(base, -S.One) | |
else: | |
base, exp = decompose_power_rat(factor) | |
elements[base] = elements.setdefault(base, 0) + exp | |
gens.add(base) | |
terms.append((coeff, elements)) | |
reprs.append(terms) | |
gens = _sort_gens(gens, opt=opt) | |
k, indices = len(gens), {} | |
for i, g in enumerate(gens): | |
indices[g] = i | |
polys = [] | |
for terms in reprs: | |
poly = {} | |
for coeff, term in terms: | |
monom = [0]*k | |
for base, exp in term.items(): | |
monom[indices[base]] = exp | |
monom = tuple(monom) | |
if monom in poly: | |
poly[monom] += Mul(*coeff) | |
else: | |
poly[monom] = Mul(*coeff) | |
polys.append(poly) | |
return polys, tuple(gens) | |
def _dict_from_expr_if_gens(expr, opt): | |
"""Transform an expression into a multinomial form given generators. """ | |
(poly,), gens = _parallel_dict_from_expr_if_gens((expr,), opt) | |
return poly, gens | |
def _dict_from_expr_no_gens(expr, opt): | |
"""Transform an expression into a multinomial form and figure out generators. """ | |
(poly,), gens = _parallel_dict_from_expr_no_gens((expr,), opt) | |
return poly, gens | |
def parallel_dict_from_expr(exprs, **args): | |
"""Transform expressions into a multinomial form. """ | |
reps, opt = _parallel_dict_from_expr(exprs, build_options(args)) | |
return reps, opt.gens | |
def _parallel_dict_from_expr(exprs, opt): | |
"""Transform expressions into a multinomial form. """ | |
if opt.expand is not False: | |
exprs = [ expr.expand() for expr in exprs ] | |
if any(expr.is_commutative is False for expr in exprs): | |
raise PolynomialError('non-commutative expressions are not supported') | |
if opt.gens: | |
reps, gens = _parallel_dict_from_expr_if_gens(exprs, opt) | |
else: | |
reps, gens = _parallel_dict_from_expr_no_gens(exprs, opt) | |
return reps, opt.clone({'gens': gens}) | |
def dict_from_expr(expr, **args): | |
"""Transform an expression into a multinomial form. """ | |
rep, opt = _dict_from_expr(expr, build_options(args)) | |
return rep, opt.gens | |
def _dict_from_expr(expr, opt): | |
"""Transform an expression into a multinomial form. """ | |
if expr.is_commutative is False: | |
raise PolynomialError('non-commutative expressions are not supported') | |
def _is_expandable_pow(expr): | |
return (expr.is_Pow and expr.exp.is_positive and expr.exp.is_Integer | |
and expr.base.is_Add) | |
if opt.expand is not False: | |
if not isinstance(expr, (Expr, Eq)): | |
raise PolynomialError('expression must be of type Expr') | |
expr = expr.expand() | |
# TODO: Integrate this into expand() itself | |
while any(_is_expandable_pow(i) or i.is_Mul and | |
any(_is_expandable_pow(j) for j in i.args) for i in | |
Add.make_args(expr)): | |
expr = expand_multinomial(expr) | |
while any(i.is_Mul and any(j.is_Add for j in i.args) for i in Add.make_args(expr)): | |
expr = expand_mul(expr) | |
if opt.gens: | |
rep, gens = _dict_from_expr_if_gens(expr, opt) | |
else: | |
rep, gens = _dict_from_expr_no_gens(expr, opt) | |
return rep, opt.clone({'gens': gens}) | |
def expr_from_dict(rep, *gens): | |
"""Convert a multinomial form into an expression. """ | |
result = [] | |
for monom, coeff in rep.items(): | |
term = [coeff] | |
for g, m in zip(gens, monom): | |
if m: | |
term.append(Pow(g, m)) | |
result.append(Mul(*term)) | |
return Add(*result) | |
parallel_dict_from_basic = parallel_dict_from_expr | |
dict_from_basic = dict_from_expr | |
basic_from_dict = expr_from_dict | |
def _dict_reorder(rep, gens, new_gens): | |
"""Reorder levels using dict representation. """ | |
gens = list(gens) | |
monoms = rep.keys() | |
coeffs = rep.values() | |
new_monoms = [ [] for _ in range(len(rep)) ] | |
used_indices = set() | |
for gen in new_gens: | |
try: | |
j = gens.index(gen) | |
used_indices.add(j) | |
for M, new_M in zip(monoms, new_monoms): | |
new_M.append(M[j]) | |
except ValueError: | |
for new_M in new_monoms: | |
new_M.append(0) | |
for i, _ in enumerate(gens): | |
if i not in used_indices: | |
for monom in monoms: | |
if monom[i]: | |
raise GeneratorsError("unable to drop generators") | |
return map(tuple, new_monoms), coeffs | |
class PicklableWithSlots: | |
""" | |
Mixin class that allows to pickle objects with ``__slots__``. | |
Examples | |
======== | |
First define a class that mixes :class:`PicklableWithSlots` in:: | |
>>> from sympy.polys.polyutils import PicklableWithSlots | |
>>> class Some(PicklableWithSlots): | |
... __slots__ = ('foo', 'bar') | |
... | |
... def __init__(self, foo, bar): | |
... self.foo = foo | |
... self.bar = bar | |
To make :mod:`pickle` happy in doctest we have to use these hacks:: | |
>>> import builtins | |
>>> builtins.Some = Some | |
>>> from sympy.polys import polyutils | |
>>> polyutils.Some = Some | |
Next lets see if we can create an instance, pickle it and unpickle:: | |
>>> some = Some('abc', 10) | |
>>> some.foo, some.bar | |
('abc', 10) | |
>>> from pickle import dumps, loads | |
>>> some2 = loads(dumps(some)) | |
>>> some2.foo, some2.bar | |
('abc', 10) | |
""" | |
__slots__ = () | |
def __getstate__(self, cls=None): | |
if cls is None: | |
# This is the case for the instance that gets pickled | |
cls = self.__class__ | |
d = {} | |
# Get all data that should be stored from super classes | |
for c in cls.__bases__: | |
# XXX: Python 3.11 defines object.__getstate__ and it does not | |
# accept any arguments so we need to make sure not to call it with | |
# an argument here. To be compatible with Python < 3.11 we need to | |
# be careful not to assume that c or object has a __getstate__ | |
# method though. | |
getstate = getattr(c, "__getstate__", None) | |
objstate = getattr(object, "__getstate__", None) | |
if getstate is not None and getstate is not objstate: | |
d.update(getstate(self, c)) | |
# Get all information that should be stored from cls and return the dict | |
for name in cls.__slots__: | |
if hasattr(self, name): | |
d[name] = getattr(self, name) | |
return d | |
def __setstate__(self, d): | |
# All values that were pickled are now assigned to a fresh instance | |
for name, value in d.items(): | |
setattr(self, name, value) | |
class IntegerPowerable: | |
r""" | |
Mixin class for classes that define a `__mul__` method, and want to be | |
raised to integer powers in the natural way that follows. Implements | |
powering via binary expansion, for efficiency. | |
By default, only integer powers $\geq 2$ are supported. To support the | |
first, zeroth, or negative powers, override the corresponding methods, | |
`_first_power`, `_zeroth_power`, `_negative_power`, below. | |
""" | |
def __pow__(self, e, modulo=None): | |
if e < 2: | |
try: | |
if e == 1: | |
return self._first_power() | |
elif e == 0: | |
return self._zeroth_power() | |
else: | |
return self._negative_power(e, modulo=modulo) | |
except NotImplementedError: | |
return NotImplemented | |
else: | |
bits = [int(d) for d in reversed(bin(e)[2:])] | |
n = len(bits) | |
p = self | |
first = True | |
for i in range(n): | |
if bits[i]: | |
if first: | |
r = p | |
first = False | |
else: | |
r *= p | |
if modulo is not None: | |
r %= modulo | |
if i < n - 1: | |
p *= p | |
if modulo is not None: | |
p %= modulo | |
return r | |
def _negative_power(self, e, modulo=None): | |
""" | |
Compute inverse of self, then raise that to the abs(e) power. | |
For example, if the class has an `inv()` method, | |
return self.inv() ** abs(e) % modulo | |
""" | |
raise NotImplementedError | |
def _zeroth_power(self): | |
"""Return unity element of algebraic struct to which self belongs.""" | |
raise NotImplementedError | |
def _first_power(self): | |
"""Return a copy of self.""" | |
raise NotImplementedError | |
_GF_types: tuple[type, ...] | |
if GROUND_TYPES == 'flint': | |
import flint | |
_GF_types = (flint.nmod, flint.fmpz_mod) | |
else: | |
from sympy.polys.domains.modularinteger import ModularInteger | |
flint = None | |
_GF_types = (ModularInteger,) | |