File size: 17,176 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
"""Useful utilities for higher level polynomial classes. """

from __future__ import annotations

from sympy.external.gmpy import GROUND_TYPES

from sympy.core import (S, Add, Mul, Pow, Eq, Expr,
    expand_mul, expand_multinomial)
from sympy.core.exprtools import decompose_power, decompose_power_rat
from sympy.core.numbers import _illegal
from sympy.polys.polyerrors import PolynomialError, GeneratorsError
from sympy.polys.polyoptions import build_options

import re


_gens_order = {
    'a': 301, 'b': 302, 'c': 303, 'd': 304,
    'e': 305, 'f': 306, 'g': 307, 'h': 308,
    'i': 309, 'j': 310, 'k': 311, 'l': 312,
    'm': 313, 'n': 314, 'o': 315, 'p': 216,
    'q': 217, 'r': 218, 's': 219, 't': 220,
    'u': 221, 'v': 222, 'w': 223, 'x': 124,
    'y': 125, 'z': 126,
}

_max_order = 1000
_re_gen = re.compile(r"^(.*?)(\d*)$", re.MULTILINE)


def _nsort(roots, separated=False):
    """Sort the numerical roots putting the real roots first, then sorting
    according to real and imaginary parts. If ``separated`` is True, then
    the real and imaginary roots will be returned in two lists, respectively.

    This routine tries to avoid issue 6137 by separating the roots into real
    and imaginary parts before evaluation. In addition, the sorting will raise
    an error if any computation cannot be done with precision.
    """
    if not all(r.is_number for r in roots):
        raise NotImplementedError
    # see issue 6137:
    # get the real part of the evaluated real and imaginary parts of each root
    key = [[i.n(2).as_real_imag()[0] for i in r.as_real_imag()] for r in roots]
    # make sure the parts were computed with precision
    if len(roots) > 1 and any(i._prec == 1 for k in key for i in k):
        raise NotImplementedError("could not compute root with precision")
    # insert a key to indicate if the root has an imaginary part
    key = [(1 if i else 0, r, i) for r, i in key]
    key = sorted(zip(key, roots))
    # return the real and imaginary roots separately if desired
    if separated:
        r = []
        i = []
        for (im, _, _), v in key:
            if im:
                i.append(v)
            else:
                r.append(v)
        return r, i
    _, roots = zip(*key)
    return list(roots)


def _sort_gens(gens, **args):
    """Sort generators in a reasonably intelligent way. """
    opt = build_options(args)

    gens_order, wrt = {}, None

    if opt is not None:
        gens_order, wrt = {}, opt.wrt

        for i, gen in enumerate(opt.sort):
            gens_order[gen] = i + 1

    def order_key(gen):
        gen = str(gen)

        if wrt is not None:
            try:
                return (-len(wrt) + wrt.index(gen), gen, 0)
            except ValueError:
                pass

        name, index = _re_gen.match(gen).groups()

        if index:
            index = int(index)
        else:
            index = 0

        try:
            return ( gens_order[name], name, index)
        except KeyError:
            pass

        try:
            return (_gens_order[name], name, index)
        except KeyError:
            pass

        return (_max_order, name, index)

    try:
        gens = sorted(gens, key=order_key)
    except TypeError:  # pragma: no cover
        pass

    return tuple(gens)


def _unify_gens(f_gens, g_gens):
    """Unify generators in a reasonably intelligent way. """
    f_gens = list(f_gens)
    g_gens = list(g_gens)

    if f_gens == g_gens:
        return tuple(f_gens)

    gens, common, k = [], [], 0

    for gen in f_gens:
        if gen in g_gens:
            common.append(gen)

    for i, gen in enumerate(g_gens):
        if gen in common:
            g_gens[i], k = common[k], k + 1

    for gen in common:
        i = f_gens.index(gen)

        gens.extend(f_gens[:i])
        f_gens = f_gens[i + 1:]

        i = g_gens.index(gen)

        gens.extend(g_gens[:i])
        g_gens = g_gens[i + 1:]

        gens.append(gen)

    gens.extend(f_gens)
    gens.extend(g_gens)

    return tuple(gens)


def _analyze_gens(gens):
    """Support for passing generators as `*gens` and `[gens]`. """
    if len(gens) == 1 and hasattr(gens[0], '__iter__'):
        return tuple(gens[0])
    else:
        return tuple(gens)


def _sort_factors(factors, **args):
    """Sort low-level factors in increasing 'complexity' order. """

    # XXX: GF(p) does not support comparisons so we need a key function to sort
    # the factors if python-flint is being used. A better solution might be to
    # add a sort key method to each domain.
    def order_key(factor):
        if isinstance(factor, _GF_types):
            return int(factor)
        elif isinstance(factor, list):
            return [order_key(f) for f in factor]
        else:
            return factor

    def order_if_multiple_key(factor):
        (f, n) = factor
        return (len(f), n, order_key(f))

    def order_no_multiple_key(f):
        return (len(f), order_key(f))

    if args.get('multiple', True):
        return sorted(factors, key=order_if_multiple_key)
    else:
        return sorted(factors, key=order_no_multiple_key)


illegal_types = [type(obj) for obj in _illegal]
finf = [float(i) for i in _illegal[1:3]]


def _not_a_coeff(expr):
    """Do not treat NaN and infinities as valid polynomial coefficients. """
    if type(expr) in illegal_types or expr in finf:
        return True
    if isinstance(expr, float) and float(expr) != expr:
        return True  # nan
    return  # could be


def _parallel_dict_from_expr_if_gens(exprs, opt):
    """Transform expressions into a multinomial form given generators. """
    k, indices = len(opt.gens), {}

    for i, g in enumerate(opt.gens):
        indices[g] = i

    polys = []

    for expr in exprs:
        poly = {}

        if expr.is_Equality:
            expr = expr.lhs - expr.rhs

        for term in Add.make_args(expr):
            coeff, monom = [], [0]*k

            for factor in Mul.make_args(term):
                if not _not_a_coeff(factor) and factor.is_Number:
                    coeff.append(factor)
                else:
                    try:
                        if opt.series is False:
                            base, exp = decompose_power(factor)

                            if exp < 0:
                                exp, base = -exp, Pow(base, -S.One)
                        else:
                            base, exp = decompose_power_rat(factor)

                        monom[indices[base]] = exp
                    except KeyError:
                        if not factor.has_free(*opt.gens):
                            coeff.append(factor)
                        else:
                            raise PolynomialError("%s contains an element of "
                                                  "the set of generators." % factor)

            monom = tuple(monom)

            if monom in poly:
                poly[monom] += Mul(*coeff)
            else:
                poly[monom] = Mul(*coeff)

        polys.append(poly)

    return polys, opt.gens


def _parallel_dict_from_expr_no_gens(exprs, opt):
    """Transform expressions into a multinomial form and figure out generators. """
    if opt.domain is not None:
        def _is_coeff(factor):
            return factor in opt.domain
    elif opt.extension is True:
        def _is_coeff(factor):
            return factor.is_algebraic
    elif opt.greedy is not False:
        def _is_coeff(factor):
            return factor is S.ImaginaryUnit
    else:
        def _is_coeff(factor):
            return factor.is_number

    gens, reprs = set(), []

    for expr in exprs:
        terms = []

        if expr.is_Equality:
            expr = expr.lhs - expr.rhs

        for term in Add.make_args(expr):
            coeff, elements = [], {}

            for factor in Mul.make_args(term):
                if not _not_a_coeff(factor) and (factor.is_Number or _is_coeff(factor)):
                    coeff.append(factor)
                else:
                    if opt.series is False:
                        base, exp = decompose_power(factor)

                        if exp < 0:
                            exp, base = -exp, Pow(base, -S.One)
                    else:
                        base, exp = decompose_power_rat(factor)

                    elements[base] = elements.setdefault(base, 0) + exp
                    gens.add(base)

            terms.append((coeff, elements))

        reprs.append(terms)

    gens = _sort_gens(gens, opt=opt)
    k, indices = len(gens), {}

    for i, g in enumerate(gens):
        indices[g] = i

    polys = []

    for terms in reprs:
        poly = {}

        for coeff, term in terms:
            monom = [0]*k

            for base, exp in term.items():
                monom[indices[base]] = exp

            monom = tuple(monom)

            if monom in poly:
                poly[monom] += Mul(*coeff)
            else:
                poly[monom] = Mul(*coeff)

        polys.append(poly)

    return polys, tuple(gens)


def _dict_from_expr_if_gens(expr, opt):
    """Transform an expression into a multinomial form given generators. """
    (poly,), gens = _parallel_dict_from_expr_if_gens((expr,), opt)
    return poly, gens


def _dict_from_expr_no_gens(expr, opt):
    """Transform an expression into a multinomial form and figure out generators. """
    (poly,), gens = _parallel_dict_from_expr_no_gens((expr,), opt)
    return poly, gens


def parallel_dict_from_expr(exprs, **args):
    """Transform expressions into a multinomial form. """
    reps, opt = _parallel_dict_from_expr(exprs, build_options(args))
    return reps, opt.gens


def _parallel_dict_from_expr(exprs, opt):
    """Transform expressions into a multinomial form. """
    if opt.expand is not False:
        exprs = [ expr.expand() for expr in exprs ]

    if any(expr.is_commutative is False for expr in exprs):
        raise PolynomialError('non-commutative expressions are not supported')

    if opt.gens:
        reps, gens = _parallel_dict_from_expr_if_gens(exprs, opt)
    else:
        reps, gens = _parallel_dict_from_expr_no_gens(exprs, opt)

    return reps, opt.clone({'gens': gens})


def dict_from_expr(expr, **args):
    """Transform an expression into a multinomial form. """
    rep, opt = _dict_from_expr(expr, build_options(args))
    return rep, opt.gens


def _dict_from_expr(expr, opt):
    """Transform an expression into a multinomial form. """
    if expr.is_commutative is False:
        raise PolynomialError('non-commutative expressions are not supported')

    def _is_expandable_pow(expr):
        return (expr.is_Pow and expr.exp.is_positive and expr.exp.is_Integer
                and expr.base.is_Add)

    if opt.expand is not False:
        if not isinstance(expr, (Expr, Eq)):
            raise PolynomialError('expression must be of type Expr')
        expr = expr.expand()
        # TODO: Integrate this into expand() itself
        while any(_is_expandable_pow(i) or i.is_Mul and
            any(_is_expandable_pow(j) for j in i.args) for i in
                Add.make_args(expr)):

            expr = expand_multinomial(expr)
        while any(i.is_Mul and any(j.is_Add for j in i.args) for i in Add.make_args(expr)):
            expr = expand_mul(expr)

    if opt.gens:
        rep, gens = _dict_from_expr_if_gens(expr, opt)
    else:
        rep, gens = _dict_from_expr_no_gens(expr, opt)

    return rep, opt.clone({'gens': gens})


def expr_from_dict(rep, *gens):
    """Convert a multinomial form into an expression. """
    result = []

    for monom, coeff in rep.items():
        term = [coeff]
        for g, m in zip(gens, monom):
            if m:
                term.append(Pow(g, m))

        result.append(Mul(*term))

    return Add(*result)

parallel_dict_from_basic = parallel_dict_from_expr
dict_from_basic = dict_from_expr
basic_from_dict = expr_from_dict


def _dict_reorder(rep, gens, new_gens):
    """Reorder levels using dict representation. """
    gens = list(gens)

    monoms = rep.keys()
    coeffs = rep.values()

    new_monoms = [ [] for _ in range(len(rep)) ]
    used_indices = set()

    for gen in new_gens:
        try:
            j = gens.index(gen)
            used_indices.add(j)

            for M, new_M in zip(monoms, new_monoms):
                new_M.append(M[j])
        except ValueError:
            for new_M in new_monoms:
                new_M.append(0)

    for i, _ in enumerate(gens):
        if i not in used_indices:
            for monom in monoms:
                if monom[i]:
                    raise GeneratorsError("unable to drop generators")

    return map(tuple, new_monoms), coeffs


class PicklableWithSlots:
    """
    Mixin class that allows to pickle objects with ``__slots__``.

    Examples
    ========

    First define a class that mixes :class:`PicklableWithSlots` in::

        >>> from sympy.polys.polyutils import PicklableWithSlots
        >>> class Some(PicklableWithSlots):
        ...     __slots__ = ('foo', 'bar')
        ...
        ...     def __init__(self, foo, bar):
        ...         self.foo = foo
        ...         self.bar = bar

    To make :mod:`pickle` happy in doctest we have to use these hacks::

        >>> import builtins
        >>> builtins.Some = Some
        >>> from sympy.polys import polyutils
        >>> polyutils.Some = Some

    Next lets see if we can create an instance, pickle it and unpickle::

        >>> some = Some('abc', 10)
        >>> some.foo, some.bar
        ('abc', 10)

        >>> from pickle import dumps, loads
        >>> some2 = loads(dumps(some))

        >>> some2.foo, some2.bar
        ('abc', 10)

    """

    __slots__ = ()

    def __getstate__(self, cls=None):
        if cls is None:
            # This is the case for the instance that gets pickled
            cls = self.__class__

        d = {}

        # Get all data that should be stored from super classes
        for c in cls.__bases__:
            # XXX: Python 3.11 defines object.__getstate__ and it does not
            # accept any arguments so we need to make sure not to call it with
            # an argument here. To be compatible with Python < 3.11 we need to
            # be careful not to assume that c or object has a __getstate__
            # method though.
            getstate = getattr(c, "__getstate__", None)
            objstate = getattr(object, "__getstate__", None)
            if getstate is not None and getstate is not objstate:
                d.update(getstate(self, c))

        # Get all information that should be stored from cls and return the dict
        for name in cls.__slots__:
            if hasattr(self, name):
                d[name] = getattr(self, name)

        return d

    def __setstate__(self, d):
        # All values that were pickled are now assigned to a fresh instance
        for name, value in d.items():
            setattr(self, name, value)


class IntegerPowerable:
    r"""
    Mixin class for classes that define a `__mul__` method, and want to be
    raised to integer powers in the natural way that follows. Implements
    powering via binary expansion, for efficiency.

    By default, only integer powers $\geq 2$ are supported. To support the
    first, zeroth, or negative powers, override the corresponding methods,
    `_first_power`, `_zeroth_power`, `_negative_power`, below.
    """

    def __pow__(self, e, modulo=None):
        if e < 2:
            try:
                if e == 1:
                    return self._first_power()
                elif e == 0:
                    return self._zeroth_power()
                else:
                    return self._negative_power(e, modulo=modulo)
            except NotImplementedError:
                return NotImplemented
        else:
            bits = [int(d) for d in reversed(bin(e)[2:])]
            n = len(bits)
            p = self
            first = True
            for i in range(n):
                if bits[i]:
                    if first:
                        r = p
                        first = False
                    else:
                        r *= p
                        if modulo is not None:
                            r %= modulo
                if i < n - 1:
                    p *= p
                    if modulo is not None:
                        p %= modulo
            return r

    def _negative_power(self, e, modulo=None):
        """
        Compute inverse of self, then raise that to the abs(e) power.
        For example, if the class has an `inv()` method,
            return self.inv() ** abs(e) % modulo
        """
        raise NotImplementedError

    def _zeroth_power(self):
        """Return unity element of algebraic struct to which self belongs."""
        raise NotImplementedError

    def _first_power(self):
        """Return a copy of self."""
        raise NotImplementedError


_GF_types: tuple[type, ...]


if GROUND_TYPES == 'flint':
    import flint
    _GF_types = (flint.nmod, flint.fmpz_mod)
else:
    from sympy.polys.domains.modularinteger import ModularInteger
    flint = None
    _GF_types = (ModularInteger,)