Spaces:
Running
Running
"""OO layer for several polynomial representations. """ | |
from __future__ import annotations | |
from sympy.external.gmpy import GROUND_TYPES | |
from sympy.utilities.exceptions import sympy_deprecation_warning | |
from sympy.core.numbers import oo | |
from sympy.core.sympify import CantSympify | |
from sympy.polys.polyutils import PicklableWithSlots, _sort_factors | |
from sympy.polys.domains import Domain, ZZ, QQ | |
from sympy.polys.polyerrors import ( | |
CoercionFailed, | |
ExactQuotientFailed, | |
DomainError, | |
NotInvertible, | |
) | |
from sympy.polys.densebasic import ( | |
ninf, | |
dmp_validate, | |
dup_normal, dmp_normal, | |
dup_convert, dmp_convert, | |
dmp_from_sympy, | |
dup_strip, | |
dmp_degree_in, | |
dmp_degree_list, | |
dmp_negative_p, | |
dmp_ground_LC, | |
dmp_ground_TC, | |
dmp_ground_nth, | |
dmp_one, dmp_ground, | |
dmp_zero, dmp_zero_p, dmp_one_p, dmp_ground_p, | |
dup_from_dict, dmp_from_dict, | |
dmp_to_dict, | |
dmp_deflate, | |
dmp_inject, dmp_eject, | |
dmp_terms_gcd, | |
dmp_list_terms, dmp_exclude, | |
dup_slice, dmp_slice_in, dmp_permute, | |
dmp_to_tuple,) | |
from sympy.polys.densearith import ( | |
dmp_add_ground, | |
dmp_sub_ground, | |
dmp_mul_ground, | |
dmp_quo_ground, | |
dmp_exquo_ground, | |
dmp_abs, | |
dmp_neg, | |
dmp_add, | |
dmp_sub, | |
dmp_mul, | |
dmp_sqr, | |
dmp_pow, | |
dmp_pdiv, | |
dmp_prem, | |
dmp_pquo, | |
dmp_pexquo, | |
dmp_div, | |
dmp_rem, | |
dmp_quo, | |
dmp_exquo, | |
dmp_add_mul, dmp_sub_mul, | |
dmp_max_norm, | |
dmp_l1_norm, | |
dmp_l2_norm_squared) | |
from sympy.polys.densetools import ( | |
dmp_clear_denoms, | |
dmp_integrate_in, | |
dmp_diff_in, | |
dmp_eval_in, | |
dup_revert, | |
dmp_ground_trunc, | |
dmp_ground_content, | |
dmp_ground_primitive, | |
dmp_ground_monic, | |
dmp_compose, | |
dup_decompose, | |
dup_shift, | |
dmp_shift, | |
dup_transform, | |
dmp_lift) | |
from sympy.polys.euclidtools import ( | |
dup_half_gcdex, dup_gcdex, dup_invert, | |
dmp_subresultants, | |
dmp_resultant, | |
dmp_discriminant, | |
dmp_inner_gcd, | |
dmp_gcd, | |
dmp_lcm, | |
dmp_cancel) | |
from sympy.polys.sqfreetools import ( | |
dup_gff_list, | |
dmp_norm, | |
dmp_sqf_p, | |
dmp_sqf_norm, | |
dmp_sqf_part, | |
dmp_sqf_list, dmp_sqf_list_include) | |
from sympy.polys.factortools import ( | |
dup_cyclotomic_p, dmp_irreducible_p, | |
dmp_factor_list, dmp_factor_list_include) | |
from sympy.polys.rootisolation import ( | |
dup_isolate_real_roots_sqf, | |
dup_isolate_real_roots, | |
dup_isolate_all_roots_sqf, | |
dup_isolate_all_roots, | |
dup_refine_real_root, | |
dup_count_real_roots, | |
dup_count_complex_roots, | |
dup_sturm, | |
dup_cauchy_upper_bound, | |
dup_cauchy_lower_bound, | |
dup_mignotte_sep_bound_squared) | |
from sympy.polys.polyerrors import ( | |
UnificationFailed, | |
PolynomialError) | |
_flint_domains: tuple[Domain, ...] | |
if GROUND_TYPES == 'flint': | |
import flint | |
_flint_domains = (ZZ, QQ) | |
else: | |
flint = None | |
_flint_domains = () | |
class DMP(CantSympify): | |
"""Dense Multivariate Polynomials over `K`. """ | |
__slots__ = () | |
def __new__(cls, rep, dom, lev=None): | |
if lev is None: | |
rep, lev = dmp_validate(rep) | |
elif not isinstance(rep, list): | |
raise CoercionFailed("expected list, got %s" % type(rep)) | |
return cls.new(rep, dom, lev) | |
def new(cls, rep, dom, lev): | |
# It would be too slow to call _validate_args always at runtime. | |
# Ideally this checking would be handled by a static type checker. | |
# | |
#cls._validate_args(rep, dom, lev) | |
if flint is not None: | |
if lev == 0 and dom in _flint_domains: | |
return DUP_Flint._new(rep, dom, lev) | |
return DMP_Python._new(rep, dom, lev) | |
def rep(f): | |
"""Get the representation of ``f``. """ | |
sympy_deprecation_warning(""" | |
Accessing the ``DMP.rep`` attribute is deprecated. The internal | |
representation of ``DMP`` instances can now be ``DUP_Flint`` when the | |
ground types are ``flint``. In this case the ``DMP`` instance does not | |
have a ``rep`` attribute. Use ``DMP.to_list()`` instead. Using | |
``DMP.to_list()`` also works in previous versions of SymPy. | |
""", | |
deprecated_since_version="1.13", | |
active_deprecations_target="dmp-rep", | |
) | |
return f.to_list() | |
def to_best(f): | |
"""Convert to DUP_Flint if possible. | |
This method should be used when the domain or level is changed and it | |
potentially becomes possible to convert from DMP_Python to DUP_Flint. | |
""" | |
if flint is not None: | |
if isinstance(f, DMP_Python) and f.lev == 0 and f.dom in _flint_domains: | |
return DUP_Flint.new(f._rep, f.dom, f.lev) | |
return f | |
def _validate_args(cls, rep, dom, lev): | |
assert isinstance(dom, Domain) | |
assert isinstance(lev, int) and lev >= 0 | |
def validate_rep(rep, lev): | |
assert isinstance(rep, list) | |
if lev == 0: | |
assert all(dom.of_type(c) for c in rep) | |
else: | |
for r in rep: | |
validate_rep(r, lev - 1) | |
validate_rep(rep, lev) | |
def from_dict(cls, rep, lev, dom): | |
rep = dmp_from_dict(rep, lev, dom) | |
return cls.new(rep, dom, lev) | |
def from_list(cls, rep, lev, dom): | |
"""Create an instance of ``cls`` given a list of native coefficients. """ | |
return cls.new(dmp_convert(rep, lev, None, dom), dom, lev) | |
def from_sympy_list(cls, rep, lev, dom): | |
"""Create an instance of ``cls`` given a list of SymPy coefficients. """ | |
return cls.new(dmp_from_sympy(rep, lev, dom), dom, lev) | |
def from_monoms_coeffs(cls, monoms, coeffs, lev, dom): | |
return cls(dict(list(zip(monoms, coeffs))), dom, lev) | |
def convert(f, dom): | |
"""Convert ``f`` to a ``DMP`` over the new domain. """ | |
if f.dom == dom: | |
return f | |
elif f.lev or flint is None: | |
return f._convert(dom) | |
elif isinstance(f, DUP_Flint): | |
if dom in _flint_domains: | |
return f._convert(dom) | |
else: | |
return f.to_DMP_Python()._convert(dom) | |
elif isinstance(f, DMP_Python): | |
if dom in _flint_domains: | |
return f._convert(dom).to_DUP_Flint() | |
else: | |
return f._convert(dom) | |
else: | |
raise RuntimeError("unreachable code") | |
def _convert(f, dom): | |
raise NotImplementedError | |
def zero(cls, lev, dom): | |
return DMP(dmp_zero(lev), dom, lev) | |
def one(cls, lev, dom): | |
return DMP(dmp_one(lev, dom), dom, lev) | |
def _one(f): | |
raise NotImplementedError | |
def __repr__(f): | |
return "%s(%s, %s)" % (f.__class__.__name__, f.to_list(), f.dom) | |
def __hash__(f): | |
return hash((f.__class__.__name__, f.to_tuple(), f.lev, f.dom)) | |
def __getnewargs__(self): | |
return self.to_list(), self.dom, self.lev | |
def ground_new(f, coeff): | |
"""Construct a new ground instance of ``f``. """ | |
raise NotImplementedError | |
def unify_DMP(f, g): | |
"""Unify and return ``DMP`` instances of ``f`` and ``g``. """ | |
if not isinstance(g, DMP) or f.lev != g.lev: | |
raise UnificationFailed("Cannot unify %s with %s" % (f, g)) | |
if f.dom != g.dom: | |
dom = f.dom.unify(g.dom) | |
f = f.convert(dom) | |
g = g.convert(dom) | |
return f, g | |
def to_dict(f, zero=False): | |
"""Convert ``f`` to a dict representation with native coefficients. """ | |
return dmp_to_dict(f.to_list(), f.lev, f.dom, zero=zero) | |
def to_sympy_dict(f, zero=False): | |
"""Convert ``f`` to a dict representation with SymPy coefficients. """ | |
rep = f.to_dict(zero=zero) | |
for k, v in rep.items(): | |
rep[k] = f.dom.to_sympy(v) | |
return rep | |
def to_sympy_list(f): | |
"""Convert ``f`` to a list representation with SymPy coefficients. """ | |
def sympify_nested_list(rep): | |
out = [] | |
for val in rep: | |
if isinstance(val, list): | |
out.append(sympify_nested_list(val)) | |
else: | |
out.append(f.dom.to_sympy(val)) | |
return out | |
return sympify_nested_list(f.to_list()) | |
def to_list(f): | |
"""Convert ``f`` to a list representation with native coefficients. """ | |
raise NotImplementedError | |
def to_tuple(f): | |
""" | |
Convert ``f`` to a tuple representation with native coefficients. | |
This is needed for hashing. | |
""" | |
raise NotImplementedError | |
def to_ring(f): | |
"""Make the ground domain a ring. """ | |
return f.convert(f.dom.get_ring()) | |
def to_field(f): | |
"""Make the ground domain a field. """ | |
return f.convert(f.dom.get_field()) | |
def to_exact(f): | |
"""Make the ground domain exact. """ | |
return f.convert(f.dom.get_exact()) | |
def slice(f, m, n, j=0): | |
"""Take a continuous subsequence of terms of ``f``. """ | |
if not f.lev and not j: | |
return f._slice(m, n) | |
else: | |
return f._slice_lev(m, n, j) | |
def _slice(f, m, n): | |
raise NotImplementedError | |
def _slice_lev(f, m, n, j): | |
raise NotImplementedError | |
def coeffs(f, order=None): | |
"""Returns all non-zero coefficients from ``f`` in lex order. """ | |
return [ c for _, c in f.terms(order=order) ] | |
def monoms(f, order=None): | |
"""Returns all non-zero monomials from ``f`` in lex order. """ | |
return [ m for m, _ in f.terms(order=order) ] | |
def terms(f, order=None): | |
"""Returns all non-zero terms from ``f`` in lex order. """ | |
if f.is_zero: | |
zero_monom = (0,)*(f.lev + 1) | |
return [(zero_monom, f.dom.zero)] | |
else: | |
return f._terms(order=order) | |
def _terms(f, order=None): | |
raise NotImplementedError | |
def all_coeffs(f): | |
"""Returns all coefficients from ``f``. """ | |
if f.lev: | |
raise PolynomialError('multivariate polynomials not supported') | |
if not f: | |
return [f.dom.zero] | |
else: | |
return list(f.to_list()) | |
def all_monoms(f): | |
"""Returns all monomials from ``f``. """ | |
if f.lev: | |
raise PolynomialError('multivariate polynomials not supported') | |
n = f.degree() | |
if n < 0: | |
return [(0,)] | |
else: | |
return [ (n - i,) for i, c in enumerate(f.to_list()) ] | |
def all_terms(f): | |
"""Returns all terms from a ``f``. """ | |
if f.lev: | |
raise PolynomialError('multivariate polynomials not supported') | |
n = f.degree() | |
if n < 0: | |
return [((0,), f.dom.zero)] | |
else: | |
return [ ((n - i,), c) for i, c in enumerate(f.to_list()) ] | |
def lift(f): | |
"""Convert algebraic coefficients to rationals. """ | |
return f._lift().to_best() | |
def _lift(f): | |
raise NotImplementedError | |
def deflate(f): | |
"""Reduce degree of `f` by mapping `x_i^m` to `y_i`. """ | |
raise NotImplementedError | |
def inject(f, front=False): | |
"""Inject ground domain generators into ``f``. """ | |
raise NotImplementedError | |
def eject(f, dom, front=False): | |
"""Eject selected generators into the ground domain. """ | |
raise NotImplementedError | |
def exclude(f): | |
r""" | |
Remove useless generators from ``f``. | |
Returns the removed generators and the new excluded ``f``. | |
Examples | |
======== | |
>>> from sympy.polys.polyclasses import DMP | |
>>> from sympy.polys.domains import ZZ | |
>>> DMP([[[ZZ(1)]], [[ZZ(1)], [ZZ(2)]]], ZZ).exclude() | |
([2], DMP_Python([[1], [1, 2]], ZZ)) | |
""" | |
J, F = f._exclude() | |
return J, F.to_best() | |
def _exclude(f): | |
raise NotImplementedError | |
def permute(f, P): | |
r""" | |
Returns a polynomial in `K[x_{P(1)}, ..., x_{P(n)}]`. | |
Examples | |
======== | |
>>> from sympy.polys.polyclasses import DMP | |
>>> from sympy.polys.domains import ZZ | |
>>> DMP([[[ZZ(2)], [ZZ(1), ZZ(0)]], [[]]], ZZ).permute([1, 0, 2]) | |
DMP_Python([[[2], []], [[1, 0], []]], ZZ) | |
>>> DMP([[[ZZ(2)], [ZZ(1), ZZ(0)]], [[]]], ZZ).permute([1, 2, 0]) | |
DMP_Python([[[1], []], [[2, 0], []]], ZZ) | |
""" | |
return f._permute(P) | |
def _permute(f, P): | |
raise NotImplementedError | |
def terms_gcd(f): | |
"""Remove GCD of terms from the polynomial ``f``. """ | |
raise NotImplementedError | |
def abs(f): | |
"""Make all coefficients in ``f`` positive. """ | |
raise NotImplementedError | |
def neg(f): | |
"""Negate all coefficients in ``f``. """ | |
raise NotImplementedError | |
def add_ground(f, c): | |
"""Add an element of the ground domain to ``f``. """ | |
return f._add_ground(f.dom.convert(c)) | |
def sub_ground(f, c): | |
"""Subtract an element of the ground domain from ``f``. """ | |
return f._sub_ground(f.dom.convert(c)) | |
def mul_ground(f, c): | |
"""Multiply ``f`` by a an element of the ground domain. """ | |
return f._mul_ground(f.dom.convert(c)) | |
def quo_ground(f, c): | |
"""Quotient of ``f`` by a an element of the ground domain. """ | |
return f._quo_ground(f.dom.convert(c)) | |
def exquo_ground(f, c): | |
"""Exact quotient of ``f`` by a an element of the ground domain. """ | |
return f._exquo_ground(f.dom.convert(c)) | |
def add(f, g): | |
"""Add two multivariate polynomials ``f`` and ``g``. """ | |
F, G = f.unify_DMP(g) | |
return F._add(G) | |
def sub(f, g): | |
"""Subtract two multivariate polynomials ``f`` and ``g``. """ | |
F, G = f.unify_DMP(g) | |
return F._sub(G) | |
def mul(f, g): | |
"""Multiply two multivariate polynomials ``f`` and ``g``. """ | |
F, G = f.unify_DMP(g) | |
return F._mul(G) | |
def sqr(f): | |
"""Square a multivariate polynomial ``f``. """ | |
return f._sqr() | |
def pow(f, n): | |
"""Raise ``f`` to a non-negative power ``n``. """ | |
if not isinstance(n, int): | |
raise TypeError("``int`` expected, got %s" % type(n)) | |
return f._pow(n) | |
def pdiv(f, g): | |
"""Polynomial pseudo-division of ``f`` and ``g``. """ | |
F, G = f.unify_DMP(g) | |
return F._pdiv(G) | |
def prem(f, g): | |
"""Polynomial pseudo-remainder of ``f`` and ``g``. """ | |
F, G = f.unify_DMP(g) | |
return F._prem(G) | |
def pquo(f, g): | |
"""Polynomial pseudo-quotient of ``f`` and ``g``. """ | |
F, G = f.unify_DMP(g) | |
return F._pquo(G) | |
def pexquo(f, g): | |
"""Polynomial exact pseudo-quotient of ``f`` and ``g``. """ | |
F, G = f.unify_DMP(g) | |
return F._pexquo(G) | |
def div(f, g): | |
"""Polynomial division with remainder of ``f`` and ``g``. """ | |
F, G = f.unify_DMP(g) | |
return F._div(G) | |
def rem(f, g): | |
"""Computes polynomial remainder of ``f`` and ``g``. """ | |
F, G = f.unify_DMP(g) | |
return F._rem(G) | |
def quo(f, g): | |
"""Computes polynomial quotient of ``f`` and ``g``. """ | |
F, G = f.unify_DMP(g) | |
return F._quo(G) | |
def exquo(f, g): | |
"""Computes polynomial exact quotient of ``f`` and ``g``. """ | |
F, G = f.unify_DMP(g) | |
return F._exquo(G) | |
def _add_ground(f, c): | |
raise NotImplementedError | |
def _sub_ground(f, c): | |
raise NotImplementedError | |
def _mul_ground(f, c): | |
raise NotImplementedError | |
def _quo_ground(f, c): | |
raise NotImplementedError | |
def _exquo_ground(f, c): | |
raise NotImplementedError | |
def _add(f, g): | |
raise NotImplementedError | |
def _sub(f, g): | |
raise NotImplementedError | |
def _mul(f, g): | |
raise NotImplementedError | |
def _sqr(f): | |
raise NotImplementedError | |
def _pow(f, n): | |
raise NotImplementedError | |
def _pdiv(f, g): | |
raise NotImplementedError | |
def _prem(f, g): | |
raise NotImplementedError | |
def _pquo(f, g): | |
raise NotImplementedError | |
def _pexquo(f, g): | |
raise NotImplementedError | |
def _div(f, g): | |
raise NotImplementedError | |
def _rem(f, g): | |
raise NotImplementedError | |
def _quo(f, g): | |
raise NotImplementedError | |
def _exquo(f, g): | |
raise NotImplementedError | |
def degree(f, j=0): | |
"""Returns the leading degree of ``f`` in ``x_j``. """ | |
if not isinstance(j, int): | |
raise TypeError("``int`` expected, got %s" % type(j)) | |
return f._degree(j) | |
def _degree(f, j): | |
raise NotImplementedError | |
def degree_list(f): | |
"""Returns a list of degrees of ``f``. """ | |
raise NotImplementedError | |
def total_degree(f): | |
"""Returns the total degree of ``f``. """ | |
raise NotImplementedError | |
def homogenize(f, s): | |
"""Return homogeneous polynomial of ``f``""" | |
td = f.total_degree() | |
result = {} | |
new_symbol = (s == len(f.terms()[0][0])) | |
for term in f.terms(): | |
d = sum(term[0]) | |
if d < td: | |
i = td - d | |
else: | |
i = 0 | |
if new_symbol: | |
result[term[0] + (i,)] = term[1] | |
else: | |
l = list(term[0]) | |
l[s] += i | |
result[tuple(l)] = term[1] | |
return DMP.from_dict(result, f.lev + int(new_symbol), f.dom) | |
def homogeneous_order(f): | |
"""Returns the homogeneous order of ``f``. """ | |
if f.is_zero: | |
return -oo | |
monoms = f.monoms() | |
tdeg = sum(monoms[0]) | |
for monom in monoms: | |
_tdeg = sum(monom) | |
if _tdeg != tdeg: | |
return None | |
return tdeg | |
def LC(f): | |
"""Returns the leading coefficient of ``f``. """ | |
raise NotImplementedError | |
def TC(f): | |
"""Returns the trailing coefficient of ``f``. """ | |
raise NotImplementedError | |
def nth(f, *N): | |
"""Returns the ``n``-th coefficient of ``f``. """ | |
if all(isinstance(n, int) for n in N): | |
return f._nth(N) | |
else: | |
raise TypeError("a sequence of integers expected") | |
def _nth(f, N): | |
raise NotImplementedError | |
def max_norm(f): | |
"""Returns maximum norm of ``f``. """ | |
raise NotImplementedError | |
def l1_norm(f): | |
"""Returns l1 norm of ``f``. """ | |
raise NotImplementedError | |
def l2_norm_squared(f): | |
"""Return squared l2 norm of ``f``. """ | |
raise NotImplementedError | |
def clear_denoms(f): | |
"""Clear denominators, but keep the ground domain. """ | |
raise NotImplementedError | |
def integrate(f, m=1, j=0): | |
"""Computes the ``m``-th order indefinite integral of ``f`` in ``x_j``. """ | |
if not isinstance(m, int): | |
raise TypeError("``int`` expected, got %s" % type(m)) | |
if not isinstance(j, int): | |
raise TypeError("``int`` expected, got %s" % type(j)) | |
return f._integrate(m, j) | |
def _integrate(f, m, j): | |
raise NotImplementedError | |
def diff(f, m=1, j=0): | |
"""Computes the ``m``-th order derivative of ``f`` in ``x_j``. """ | |
if not isinstance(m, int): | |
raise TypeError("``int`` expected, got %s" % type(m)) | |
if not isinstance(j, int): | |
raise TypeError("``int`` expected, got %s" % type(j)) | |
return f._diff(m, j) | |
def _diff(f, m, j): | |
raise NotImplementedError | |
def eval(f, a, j=0): | |
"""Evaluates ``f`` at the given point ``a`` in ``x_j``. """ | |
if not isinstance(j, int): | |
raise TypeError("``int`` expected, got %s" % type(j)) | |
elif not (0 <= j <= f.lev): | |
raise ValueError("invalid variable index %s" % j) | |
if f.lev: | |
return f._eval_lev(a, j) | |
else: | |
return f._eval(a) | |
def _eval(f, a): | |
raise NotImplementedError | |
def _eval_lev(f, a, j): | |
raise NotImplementedError | |
def half_gcdex(f, g): | |
"""Half extended Euclidean algorithm, if univariate. """ | |
F, G = f.unify_DMP(g) | |
if F.lev: | |
raise ValueError('univariate polynomial expected') | |
return F._half_gcdex(G) | |
def _half_gcdex(f, g): | |
raise NotImplementedError | |
def gcdex(f, g): | |
"""Extended Euclidean algorithm, if univariate. """ | |
F, G = f.unify_DMP(g) | |
if F.lev: | |
raise ValueError('univariate polynomial expected') | |
if not F.dom.is_Field: | |
raise DomainError('ground domain must be a field') | |
return F._gcdex(G) | |
def _gcdex(f, g): | |
raise NotImplementedError | |
def invert(f, g): | |
"""Invert ``f`` modulo ``g``, if possible. """ | |
F, G = f.unify_DMP(g) | |
if F.lev: | |
raise ValueError('univariate polynomial expected') | |
return F._invert(G) | |
def _invert(f, g): | |
raise NotImplementedError | |
def revert(f, n): | |
"""Compute ``f**(-1)`` mod ``x**n``. """ | |
if f.lev: | |
raise ValueError('univariate polynomial expected') | |
return f._revert(n) | |
def _revert(f, n): | |
raise NotImplementedError | |
def subresultants(f, g): | |
"""Computes subresultant PRS sequence of ``f`` and ``g``. """ | |
F, G = f.unify_DMP(g) | |
return F._subresultants(G) | |
def _subresultants(f, g): | |
raise NotImplementedError | |
def resultant(f, g, includePRS=False): | |
"""Computes resultant of ``f`` and ``g`` via PRS. """ | |
F, G = f.unify_DMP(g) | |
if includePRS: | |
return F._resultant_includePRS(G) | |
else: | |
return F._resultant(G) | |
def _resultant(f, g, includePRS=False): | |
raise NotImplementedError | |
def discriminant(f): | |
"""Computes discriminant of ``f``. """ | |
raise NotImplementedError | |
def cofactors(f, g): | |
"""Returns GCD of ``f`` and ``g`` and their cofactors. """ | |
F, G = f.unify_DMP(g) | |
return F._cofactors(G) | |
def _cofactors(f, g): | |
raise NotImplementedError | |
def gcd(f, g): | |
"""Returns polynomial GCD of ``f`` and ``g``. """ | |
F, G = f.unify_DMP(g) | |
return F._gcd(G) | |
def _gcd(f, g): | |
raise NotImplementedError | |
def lcm(f, g): | |
"""Returns polynomial LCM of ``f`` and ``g``. """ | |
F, G = f.unify_DMP(g) | |
return F._lcm(G) | |
def _lcm(f, g): | |
raise NotImplementedError | |
def cancel(f, g, include=True): | |
"""Cancel common factors in a rational function ``f/g``. """ | |
F, G = f.unify_DMP(g) | |
if include: | |
return F._cancel_include(G) | |
else: | |
return F._cancel(G) | |
def _cancel(f, g): | |
raise NotImplementedError | |
def _cancel_include(f, g): | |
raise NotImplementedError | |
def trunc(f, p): | |
"""Reduce ``f`` modulo a constant ``p``. """ | |
return f._trunc(f.dom.convert(p)) | |
def _trunc(f, p): | |
raise NotImplementedError | |
def monic(f): | |
"""Divides all coefficients by ``LC(f)``. """ | |
raise NotImplementedError | |
def content(f): | |
"""Returns GCD of polynomial coefficients. """ | |
raise NotImplementedError | |
def primitive(f): | |
"""Returns content and a primitive form of ``f``. """ | |
raise NotImplementedError | |
def compose(f, g): | |
"""Computes functional composition of ``f`` and ``g``. """ | |
F, G = f.unify_DMP(g) | |
return F._compose(G) | |
def _compose(f, g): | |
raise NotImplementedError | |
def decompose(f): | |
"""Computes functional decomposition of ``f``. """ | |
if f.lev: | |
raise ValueError('univariate polynomial expected') | |
return f._decompose() | |
def _decompose(f): | |
raise NotImplementedError | |
def shift(f, a): | |
"""Efficiently compute Taylor shift ``f(x + a)``. """ | |
if f.lev: | |
raise ValueError('univariate polynomial expected') | |
return f._shift(f.dom.convert(a)) | |
def shift_list(f, a): | |
"""Efficiently compute Taylor shift ``f(X + A)``. """ | |
a = [f.dom.convert(ai) for ai in a] | |
return f._shift_list(a) | |
def _shift(f, a): | |
raise NotImplementedError | |
def transform(f, p, q): | |
"""Evaluate functional transformation ``q**n * f(p/q)``.""" | |
if f.lev: | |
raise ValueError('univariate polynomial expected') | |
P, Q = p.unify_DMP(q) | |
F, P = f.unify_DMP(P) | |
F, Q = F.unify_DMP(Q) | |
return F._transform(P, Q) | |
def _transform(f, p, q): | |
raise NotImplementedError | |
def sturm(f): | |
"""Computes the Sturm sequence of ``f``. """ | |
if f.lev: | |
raise ValueError('univariate polynomial expected') | |
return f._sturm() | |
def _sturm(f): | |
raise NotImplementedError | |
def cauchy_upper_bound(f): | |
"""Computes the Cauchy upper bound on the roots of ``f``. """ | |
if f.lev: | |
raise ValueError('univariate polynomial expected') | |
return f._cauchy_upper_bound() | |
def _cauchy_upper_bound(f): | |
raise NotImplementedError | |
def cauchy_lower_bound(f): | |
"""Computes the Cauchy lower bound on the nonzero roots of ``f``. """ | |
if f.lev: | |
raise ValueError('univariate polynomial expected') | |
return f._cauchy_lower_bound() | |
def _cauchy_lower_bound(f): | |
raise NotImplementedError | |
def mignotte_sep_bound_squared(f): | |
"""Computes the squared Mignotte bound on root separations of ``f``. """ | |
if f.lev: | |
raise ValueError('univariate polynomial expected') | |
return f._mignotte_sep_bound_squared() | |
def _mignotte_sep_bound_squared(f): | |
raise NotImplementedError | |
def gff_list(f): | |
"""Computes greatest factorial factorization of ``f``. """ | |
if f.lev: | |
raise ValueError('univariate polynomial expected') | |
return f._gff_list() | |
def _gff_list(f): | |
raise NotImplementedError | |
def norm(f): | |
"""Computes ``Norm(f)``.""" | |
raise NotImplementedError | |
def sqf_norm(f): | |
"""Computes square-free norm of ``f``. """ | |
raise NotImplementedError | |
def sqf_part(f): | |
"""Computes square-free part of ``f``. """ | |
raise NotImplementedError | |
def sqf_list(f, all=False): | |
"""Returns a list of square-free factors of ``f``. """ | |
raise NotImplementedError | |
def sqf_list_include(f, all=False): | |
"""Returns a list of square-free factors of ``f``. """ | |
raise NotImplementedError | |
def factor_list(f): | |
"""Returns a list of irreducible factors of ``f``. """ | |
raise NotImplementedError | |
def factor_list_include(f): | |
"""Returns a list of irreducible factors of ``f``. """ | |
raise NotImplementedError | |
def intervals(f, all=False, eps=None, inf=None, sup=None, fast=False, sqf=False): | |
"""Compute isolating intervals for roots of ``f``. """ | |
if f.lev: | |
raise PolynomialError("Cannot isolate roots of a multivariate polynomial") | |
if all and sqf: | |
return f._isolate_all_roots_sqf(eps=eps, inf=inf, sup=sup, fast=fast) | |
elif all and not sqf: | |
return f._isolate_all_roots(eps=eps, inf=inf, sup=sup, fast=fast) | |
elif not all and sqf: | |
return f._isolate_real_roots_sqf(eps=eps, inf=inf, sup=sup, fast=fast) | |
else: | |
return f._isolate_real_roots(eps=eps, inf=inf, sup=sup, fast=fast) | |
def _isolate_all_roots(f, eps, inf, sup, fast): | |
raise NotImplementedError | |
def _isolate_all_roots_sqf(f, eps, inf, sup, fast): | |
raise NotImplementedError | |
def _isolate_real_roots(f, eps, inf, sup, fast): | |
raise NotImplementedError | |
def _isolate_real_roots_sqf(f, eps, inf, sup, fast): | |
raise NotImplementedError | |
def refine_root(f, s, t, eps=None, steps=None, fast=False): | |
""" | |
Refine an isolating interval to the given precision. | |
``eps`` should be a rational number. | |
""" | |
if f.lev: | |
raise PolynomialError( | |
"Cannot refine a root of a multivariate polynomial") | |
return f._refine_real_root(s, t, eps=eps, steps=steps, fast=fast) | |
def _refine_real_root(f, s, t, eps, steps, fast): | |
raise NotImplementedError | |
def count_real_roots(f, inf=None, sup=None): | |
"""Return the number of real roots of ``f`` in ``[inf, sup]``. """ | |
raise NotImplementedError | |
def count_complex_roots(f, inf=None, sup=None): | |
"""Return the number of complex roots of ``f`` in ``[inf, sup]``. """ | |
raise NotImplementedError | |
def is_zero(f): | |
"""Returns ``True`` if ``f`` is a zero polynomial. """ | |
raise NotImplementedError | |
def is_one(f): | |
"""Returns ``True`` if ``f`` is a unit polynomial. """ | |
raise NotImplementedError | |
def is_ground(f): | |
"""Returns ``True`` if ``f`` is an element of the ground domain. """ | |
raise NotImplementedError | |
def is_sqf(f): | |
"""Returns ``True`` if ``f`` is a square-free polynomial. """ | |
raise NotImplementedError | |
def is_monic(f): | |
"""Returns ``True`` if the leading coefficient of ``f`` is one. """ | |
raise NotImplementedError | |
def is_primitive(f): | |
"""Returns ``True`` if the GCD of the coefficients of ``f`` is one. """ | |
raise NotImplementedError | |
def is_linear(f): | |
"""Returns ``True`` if ``f`` is linear in all its variables. """ | |
raise NotImplementedError | |
def is_quadratic(f): | |
"""Returns ``True`` if ``f`` is quadratic in all its variables. """ | |
raise NotImplementedError | |
def is_monomial(f): | |
"""Returns ``True`` if ``f`` is zero or has only one term. """ | |
raise NotImplementedError | |
def is_homogeneous(f): | |
"""Returns ``True`` if ``f`` is a homogeneous polynomial. """ | |
raise NotImplementedError | |
def is_irreducible(f): | |
"""Returns ``True`` if ``f`` has no factors over its domain. """ | |
raise NotImplementedError | |
def is_cyclotomic(f): | |
"""Returns ``True`` if ``f`` is a cyclotomic polynomial. """ | |
raise NotImplementedError | |
def __abs__(f): | |
return f.abs() | |
def __neg__(f): | |
return f.neg() | |
def __add__(f, g): | |
if isinstance(g, DMP): | |
return f.add(g) | |
else: | |
try: | |
return f.add_ground(g) | |
except CoercionFailed: | |
return NotImplemented | |
def __radd__(f, g): | |
return f.__add__(g) | |
def __sub__(f, g): | |
if isinstance(g, DMP): | |
return f.sub(g) | |
else: | |
try: | |
return f.sub_ground(g) | |
except CoercionFailed: | |
return NotImplemented | |
def __rsub__(f, g): | |
return (-f).__add__(g) | |
def __mul__(f, g): | |
if isinstance(g, DMP): | |
return f.mul(g) | |
else: | |
try: | |
return f.mul_ground(g) | |
except CoercionFailed: | |
return NotImplemented | |
def __rmul__(f, g): | |
return f.__mul__(g) | |
def __truediv__(f, g): | |
if isinstance(g, DMP): | |
return f.exquo(g) | |
else: | |
try: | |
return f.mul_ground(g) | |
except CoercionFailed: | |
return NotImplemented | |
def __rtruediv__(f, g): | |
if isinstance(g, DMP): | |
return g.exquo(f) | |
else: | |
try: | |
return f._one().mul_ground(g).exquo(f) | |
except CoercionFailed: | |
return NotImplemented | |
def __pow__(f, n): | |
return f.pow(n) | |
def __divmod__(f, g): | |
return f.div(g) | |
def __mod__(f, g): | |
return f.rem(g) | |
def __floordiv__(f, g): | |
if isinstance(g, DMP): | |
return f.quo(g) | |
else: | |
try: | |
return f.quo_ground(g) | |
except TypeError: | |
return NotImplemented | |
def __eq__(f, g): | |
if f is g: | |
return True | |
if not isinstance(g, DMP): | |
return NotImplemented | |
try: | |
F, G = f.unify_DMP(g) | |
except UnificationFailed: | |
return False | |
else: | |
return F._strict_eq(G) | |
def _strict_eq(f, g): | |
raise NotImplementedError | |
def eq(f, g, strict=False): | |
if not strict: | |
return f == g | |
else: | |
return f._strict_eq(g) | |
def ne(f, g, strict=False): | |
return not f.eq(g, strict=strict) | |
def __lt__(f, g): | |
F, G = f.unify_DMP(g) | |
return F.to_list() < G.to_list() | |
def __le__(f, g): | |
F, G = f.unify_DMP(g) | |
return F.to_list() <= G.to_list() | |
def __gt__(f, g): | |
F, G = f.unify_DMP(g) | |
return F.to_list() > G.to_list() | |
def __ge__(f, g): | |
F, G = f.unify_DMP(g) | |
return F.to_list() >= G.to_list() | |
def __bool__(f): | |
return not f.is_zero | |
class DMP_Python(DMP): | |
"""Dense Multivariate Polynomials over `K`. """ | |
__slots__ = ('_rep', 'dom', 'lev') | |
def _new(cls, rep, dom, lev): | |
obj = object.__new__(cls) | |
obj._rep = rep | |
obj.lev = lev | |
obj.dom = dom | |
return obj | |
def _strict_eq(f, g): | |
if type(f) != type(g): | |
return False | |
return f.lev == g.lev and f.dom == g.dom and f._rep == g._rep | |
def per(f, rep): | |
"""Create a DMP out of the given representation. """ | |
return f._new(rep, f.dom, f.lev) | |
def ground_new(f, coeff): | |
"""Construct a new ground instance of ``f``. """ | |
return f._new(dmp_ground(coeff, f.lev), f.dom, f.lev) | |
def _one(f): | |
return f.one(f.lev, f.dom) | |
def unify(f, g): | |
"""Unify representations of two multivariate polynomials. """ | |
# XXX: This function is not really used any more since there is | |
# unify_DMP now. | |
if not isinstance(g, DMP) or f.lev != g.lev: | |
raise UnificationFailed("Cannot unify %s with %s" % (f, g)) | |
if f.dom == g.dom: | |
return f.lev, f.dom, f.per, f._rep, g._rep | |
else: | |
lev, dom = f.lev, f.dom.unify(g.dom) | |
F = dmp_convert(f._rep, lev, f.dom, dom) | |
G = dmp_convert(g._rep, lev, g.dom, dom) | |
def per(rep): | |
return f._new(rep, dom, lev) | |
return lev, dom, per, F, G | |
def to_DUP_Flint(f): | |
"""Convert ``f`` to a Flint representation. """ | |
return DUP_Flint._new(f._rep, f.dom, f.lev) | |
def to_list(f): | |
"""Convert ``f`` to a list representation with native coefficients. """ | |
return list(f._rep) | |
def to_tuple(f): | |
"""Convert ``f`` to a tuple representation with native coefficients. """ | |
return dmp_to_tuple(f._rep, f.lev) | |
def _convert(f, dom): | |
"""Convert the ground domain of ``f``. """ | |
return f._new(dmp_convert(f._rep, f.lev, f.dom, dom), dom, f.lev) | |
def _slice(f, m, n): | |
"""Take a continuous subsequence of terms of ``f``. """ | |
rep = dup_slice(f._rep, m, n, f.dom) | |
return f._new(rep, f.dom, f.lev) | |
def _slice_lev(f, m, n, j): | |
"""Take a continuous subsequence of terms of ``f``. """ | |
rep = dmp_slice_in(f._rep, m, n, j, f.lev, f.dom) | |
return f._new(rep, f.dom, f.lev) | |
def _terms(f, order=None): | |
"""Returns all non-zero terms from ``f`` in lex order. """ | |
return dmp_list_terms(f._rep, f.lev, f.dom, order=order) | |
def _lift(f): | |
"""Convert algebraic coefficients to rationals. """ | |
r = dmp_lift(f._rep, f.lev, f.dom) | |
return f._new(r, f.dom.dom, f.lev) | |
def deflate(f): | |
"""Reduce degree of `f` by mapping `x_i^m` to `y_i`. """ | |
J, F = dmp_deflate(f._rep, f.lev, f.dom) | |
return J, f.per(F) | |
def inject(f, front=False): | |
"""Inject ground domain generators into ``f``. """ | |
F, lev = dmp_inject(f._rep, f.lev, f.dom, front=front) | |
# XXX: domain and level changed here | |
return f._new(F, f.dom.dom, lev) | |
def eject(f, dom, front=False): | |
"""Eject selected generators into the ground domain. """ | |
F = dmp_eject(f._rep, f.lev, dom, front=front) | |
# XXX: domain and level changed here | |
return f._new(F, dom, f.lev - len(dom.symbols)) | |
def _exclude(f): | |
"""Remove useless generators from ``f``. """ | |
J, F, u = dmp_exclude(f._rep, f.lev, f.dom) | |
# XXX: level changed here | |
return J, f._new(F, f.dom, u) | |
def _permute(f, P): | |
"""Returns a polynomial in `K[x_{P(1)}, ..., x_{P(n)}]`. """ | |
return f.per(dmp_permute(f._rep, P, f.lev, f.dom)) | |
def terms_gcd(f): | |
"""Remove GCD of terms from the polynomial ``f``. """ | |
J, F = dmp_terms_gcd(f._rep, f.lev, f.dom) | |
return J, f.per(F) | |
def _add_ground(f, c): | |
"""Add an element of the ground domain to ``f``. """ | |
return f.per(dmp_add_ground(f._rep, c, f.lev, f.dom)) | |
def _sub_ground(f, c): | |
"""Subtract an element of the ground domain from ``f``. """ | |
return f.per(dmp_sub_ground(f._rep, c, f.lev, f.dom)) | |
def _mul_ground(f, c): | |
"""Multiply ``f`` by a an element of the ground domain. """ | |
return f.per(dmp_mul_ground(f._rep, c, f.lev, f.dom)) | |
def _quo_ground(f, c): | |
"""Quotient of ``f`` by a an element of the ground domain. """ | |
return f.per(dmp_quo_ground(f._rep, c, f.lev, f.dom)) | |
def _exquo_ground(f, c): | |
"""Exact quotient of ``f`` by a an element of the ground domain. """ | |
return f.per(dmp_exquo_ground(f._rep, c, f.lev, f.dom)) | |
def abs(f): | |
"""Make all coefficients in ``f`` positive. """ | |
return f.per(dmp_abs(f._rep, f.lev, f.dom)) | |
def neg(f): | |
"""Negate all coefficients in ``f``. """ | |
return f.per(dmp_neg(f._rep, f.lev, f.dom)) | |
def _add(f, g): | |
"""Add two multivariate polynomials ``f`` and ``g``. """ | |
return f.per(dmp_add(f._rep, g._rep, f.lev, f.dom)) | |
def _sub(f, g): | |
"""Subtract two multivariate polynomials ``f`` and ``g``. """ | |
return f.per(dmp_sub(f._rep, g._rep, f.lev, f.dom)) | |
def _mul(f, g): | |
"""Multiply two multivariate polynomials ``f`` and ``g``. """ | |
return f.per(dmp_mul(f._rep, g._rep, f.lev, f.dom)) | |
def sqr(f): | |
"""Square a multivariate polynomial ``f``. """ | |
return f.per(dmp_sqr(f._rep, f.lev, f.dom)) | |
def _pow(f, n): | |
"""Raise ``f`` to a non-negative power ``n``. """ | |
return f.per(dmp_pow(f._rep, n, f.lev, f.dom)) | |
def _pdiv(f, g): | |
"""Polynomial pseudo-division of ``f`` and ``g``. """ | |
q, r = dmp_pdiv(f._rep, g._rep, f.lev, f.dom) | |
return f.per(q), f.per(r) | |
def _prem(f, g): | |
"""Polynomial pseudo-remainder of ``f`` and ``g``. """ | |
return f.per(dmp_prem(f._rep, g._rep, f.lev, f.dom)) | |
def _pquo(f, g): | |
"""Polynomial pseudo-quotient of ``f`` and ``g``. """ | |
return f.per(dmp_pquo(f._rep, g._rep, f.lev, f.dom)) | |
def _pexquo(f, g): | |
"""Polynomial exact pseudo-quotient of ``f`` and ``g``. """ | |
return f.per(dmp_pexquo(f._rep, g._rep, f.lev, f.dom)) | |
def _div(f, g): | |
"""Polynomial division with remainder of ``f`` and ``g``. """ | |
q, r = dmp_div(f._rep, g._rep, f.lev, f.dom) | |
return f.per(q), f.per(r) | |
def _rem(f, g): | |
"""Computes polynomial remainder of ``f`` and ``g``. """ | |
return f.per(dmp_rem(f._rep, g._rep, f.lev, f.dom)) | |
def _quo(f, g): | |
"""Computes polynomial quotient of ``f`` and ``g``. """ | |
return f.per(dmp_quo(f._rep, g._rep, f.lev, f.dom)) | |
def _exquo(f, g): | |
"""Computes polynomial exact quotient of ``f`` and ``g``. """ | |
return f.per(dmp_exquo(f._rep, g._rep, f.lev, f.dom)) | |
def _degree(f, j=0): | |
"""Returns the leading degree of ``f`` in ``x_j``. """ | |
return dmp_degree_in(f._rep, j, f.lev) | |
def degree_list(f): | |
"""Returns a list of degrees of ``f``. """ | |
return dmp_degree_list(f._rep, f.lev) | |
def total_degree(f): | |
"""Returns the total degree of ``f``. """ | |
return max(sum(m) for m in f.monoms()) | |
def LC(f): | |
"""Returns the leading coefficient of ``f``. """ | |
return dmp_ground_LC(f._rep, f.lev, f.dom) | |
def TC(f): | |
"""Returns the trailing coefficient of ``f``. """ | |
return dmp_ground_TC(f._rep, f.lev, f.dom) | |
def _nth(f, N): | |
"""Returns the ``n``-th coefficient of ``f``. """ | |
return dmp_ground_nth(f._rep, N, f.lev, f.dom) | |
def max_norm(f): | |
"""Returns maximum norm of ``f``. """ | |
return dmp_max_norm(f._rep, f.lev, f.dom) | |
def l1_norm(f): | |
"""Returns l1 norm of ``f``. """ | |
return dmp_l1_norm(f._rep, f.lev, f.dom) | |
def l2_norm_squared(f): | |
"""Return squared l2 norm of ``f``. """ | |
return dmp_l2_norm_squared(f._rep, f.lev, f.dom) | |
def clear_denoms(f): | |
"""Clear denominators, but keep the ground domain. """ | |
coeff, F = dmp_clear_denoms(f._rep, f.lev, f.dom) | |
return coeff, f.per(F) | |
def _integrate(f, m=1, j=0): | |
"""Computes the ``m``-th order indefinite integral of ``f`` in ``x_j``. """ | |
return f.per(dmp_integrate_in(f._rep, m, j, f.lev, f.dom)) | |
def _diff(f, m=1, j=0): | |
"""Computes the ``m``-th order derivative of ``f`` in ``x_j``. """ | |
return f.per(dmp_diff_in(f._rep, m, j, f.lev, f.dom)) | |
def _eval(f, a): | |
return dmp_eval_in(f._rep, f.dom.convert(a), 0, f.lev, f.dom) | |
def _eval_lev(f, a, j): | |
rep = dmp_eval_in(f._rep, f.dom.convert(a), j, f.lev, f.dom) | |
return f.new(rep, f.dom, f.lev - 1) | |
def _half_gcdex(f, g): | |
"""Half extended Euclidean algorithm, if univariate. """ | |
s, h = dup_half_gcdex(f._rep, g._rep, f.dom) | |
return f.per(s), f.per(h) | |
def _gcdex(f, g): | |
"""Extended Euclidean algorithm, if univariate. """ | |
s, t, h = dup_gcdex(f._rep, g._rep, f.dom) | |
return f.per(s), f.per(t), f.per(h) | |
def _invert(f, g): | |
"""Invert ``f`` modulo ``g``, if possible. """ | |
s = dup_invert(f._rep, g._rep, f.dom) | |
return f.per(s) | |
def _revert(f, n): | |
"""Compute ``f**(-1)`` mod ``x**n``. """ | |
return f.per(dup_revert(f._rep, n, f.dom)) | |
def _subresultants(f, g): | |
"""Computes subresultant PRS sequence of ``f`` and ``g``. """ | |
R = dmp_subresultants(f._rep, g._rep, f.lev, f.dom) | |
return list(map(f.per, R)) | |
def _resultant_includePRS(f, g): | |
"""Computes resultant of ``f`` and ``g`` via PRS. """ | |
res, R = dmp_resultant(f._rep, g._rep, f.lev, f.dom, includePRS=True) | |
if f.lev: | |
res = f.new(res, f.dom, f.lev - 1) | |
return res, list(map(f.per, R)) | |
def _resultant(f, g): | |
res = dmp_resultant(f._rep, g._rep, f.lev, f.dom) | |
if f.lev: | |
res = f.new(res, f.dom, f.lev - 1) | |
return res | |
def discriminant(f): | |
"""Computes discriminant of ``f``. """ | |
res = dmp_discriminant(f._rep, f.lev, f.dom) | |
if f.lev: | |
res = f.new(res, f.dom, f.lev - 1) | |
return res | |
def _cofactors(f, g): | |
"""Returns GCD of ``f`` and ``g`` and their cofactors. """ | |
h, cff, cfg = dmp_inner_gcd(f._rep, g._rep, f.lev, f.dom) | |
return f.per(h), f.per(cff), f.per(cfg) | |
def _gcd(f, g): | |
"""Returns polynomial GCD of ``f`` and ``g``. """ | |
return f.per(dmp_gcd(f._rep, g._rep, f.lev, f.dom)) | |
def _lcm(f, g): | |
"""Returns polynomial LCM of ``f`` and ``g``. """ | |
return f.per(dmp_lcm(f._rep, g._rep, f.lev, f.dom)) | |
def _cancel(f, g): | |
"""Cancel common factors in a rational function ``f/g``. """ | |
cF, cG, F, G = dmp_cancel(f._rep, g._rep, f.lev, f.dom, include=False) | |
return cF, cG, f.per(F), f.per(G) | |
def _cancel_include(f, g): | |
"""Cancel common factors in a rational function ``f/g``. """ | |
F, G = dmp_cancel(f._rep, g._rep, f.lev, f.dom, include=True) | |
return f.per(F), f.per(G) | |
def _trunc(f, p): | |
"""Reduce ``f`` modulo a constant ``p``. """ | |
return f.per(dmp_ground_trunc(f._rep, p, f.lev, f.dom)) | |
def monic(f): | |
"""Divides all coefficients by ``LC(f)``. """ | |
return f.per(dmp_ground_monic(f._rep, f.lev, f.dom)) | |
def content(f): | |
"""Returns GCD of polynomial coefficients. """ | |
return dmp_ground_content(f._rep, f.lev, f.dom) | |
def primitive(f): | |
"""Returns content and a primitive form of ``f``. """ | |
cont, F = dmp_ground_primitive(f._rep, f.lev, f.dom) | |
return cont, f.per(F) | |
def _compose(f, g): | |
"""Computes functional composition of ``f`` and ``g``. """ | |
return f.per(dmp_compose(f._rep, g._rep, f.lev, f.dom)) | |
def _decompose(f): | |
"""Computes functional decomposition of ``f``. """ | |
return list(map(f.per, dup_decompose(f._rep, f.dom))) | |
def _shift(f, a): | |
"""Efficiently compute Taylor shift ``f(x + a)``. """ | |
return f.per(dup_shift(f._rep, a, f.dom)) | |
def _shift_list(f, a): | |
"""Efficiently compute Taylor shift ``f(X + A)``. """ | |
return f.per(dmp_shift(f._rep, a, f.lev, f.dom)) | |
def _transform(f, p, q): | |
"""Evaluate functional transformation ``q**n * f(p/q)``.""" | |
return f.per(dup_transform(f._rep, p._rep, q._rep, f.dom)) | |
def _sturm(f): | |
"""Computes the Sturm sequence of ``f``. """ | |
return list(map(f.per, dup_sturm(f._rep, f.dom))) | |
def _cauchy_upper_bound(f): | |
"""Computes the Cauchy upper bound on the roots of ``f``. """ | |
return dup_cauchy_upper_bound(f._rep, f.dom) | |
def _cauchy_lower_bound(f): | |
"""Computes the Cauchy lower bound on the nonzero roots of ``f``. """ | |
return dup_cauchy_lower_bound(f._rep, f.dom) | |
def _mignotte_sep_bound_squared(f): | |
"""Computes the squared Mignotte bound on root separations of ``f``. """ | |
return dup_mignotte_sep_bound_squared(f._rep, f.dom) | |
def _gff_list(f): | |
"""Computes greatest factorial factorization of ``f``. """ | |
return [ (f.per(g), k) for g, k in dup_gff_list(f._rep, f.dom) ] | |
def norm(f): | |
"""Computes ``Norm(f)``.""" | |
r = dmp_norm(f._rep, f.lev, f.dom) | |
return f.new(r, f.dom.dom, f.lev) | |
def sqf_norm(f): | |
"""Computes square-free norm of ``f``. """ | |
s, g, r = dmp_sqf_norm(f._rep, f.lev, f.dom) | |
return s, f.per(g), f.new(r, f.dom.dom, f.lev) | |
def sqf_part(f): | |
"""Computes square-free part of ``f``. """ | |
return f.per(dmp_sqf_part(f._rep, f.lev, f.dom)) | |
def sqf_list(f, all=False): | |
"""Returns a list of square-free factors of ``f``. """ | |
coeff, factors = dmp_sqf_list(f._rep, f.lev, f.dom, all) | |
return coeff, [ (f.per(g), k) for g, k in factors ] | |
def sqf_list_include(f, all=False): | |
"""Returns a list of square-free factors of ``f``. """ | |
factors = dmp_sqf_list_include(f._rep, f.lev, f.dom, all) | |
return [ (f.per(g), k) for g, k in factors ] | |
def factor_list(f): | |
"""Returns a list of irreducible factors of ``f``. """ | |
coeff, factors = dmp_factor_list(f._rep, f.lev, f.dom) | |
return coeff, [ (f.per(g), k) for g, k in factors ] | |
def factor_list_include(f): | |
"""Returns a list of irreducible factors of ``f``. """ | |
factors = dmp_factor_list_include(f._rep, f.lev, f.dom) | |
return [ (f.per(g), k) for g, k in factors ] | |
def _isolate_real_roots(f, eps, inf, sup, fast): | |
return dup_isolate_real_roots(f._rep, f.dom, eps=eps, inf=inf, sup=sup, fast=fast) | |
def _isolate_real_roots_sqf(f, eps, inf, sup, fast): | |
return dup_isolate_real_roots_sqf(f._rep, f.dom, eps=eps, inf=inf, sup=sup, fast=fast) | |
def _isolate_all_roots(f, eps, inf, sup, fast): | |
return dup_isolate_all_roots(f._rep, f.dom, eps=eps, inf=inf, sup=sup, fast=fast) | |
def _isolate_all_roots_sqf(f, eps, inf, sup, fast): | |
return dup_isolate_all_roots_sqf(f._rep, f.dom, eps=eps, inf=inf, sup=sup, fast=fast) | |
def _refine_real_root(f, s, t, eps, steps, fast): | |
return dup_refine_real_root(f._rep, s, t, f.dom, eps=eps, steps=steps, fast=fast) | |
def count_real_roots(f, inf=None, sup=None): | |
"""Return the number of real roots of ``f`` in ``[inf, sup]``. """ | |
return dup_count_real_roots(f._rep, f.dom, inf=inf, sup=sup) | |
def count_complex_roots(f, inf=None, sup=None): | |
"""Return the number of complex roots of ``f`` in ``[inf, sup]``. """ | |
return dup_count_complex_roots(f._rep, f.dom, inf=inf, sup=sup) | |
def is_zero(f): | |
"""Returns ``True`` if ``f`` is a zero polynomial. """ | |
return dmp_zero_p(f._rep, f.lev) | |
def is_one(f): | |
"""Returns ``True`` if ``f`` is a unit polynomial. """ | |
return dmp_one_p(f._rep, f.lev, f.dom) | |
def is_ground(f): | |
"""Returns ``True`` if ``f`` is an element of the ground domain. """ | |
return dmp_ground_p(f._rep, None, f.lev) | |
def is_sqf(f): | |
"""Returns ``True`` if ``f`` is a square-free polynomial. """ | |
return dmp_sqf_p(f._rep, f.lev, f.dom) | |
def is_monic(f): | |
"""Returns ``True`` if the leading coefficient of ``f`` is one. """ | |
return f.dom.is_one(dmp_ground_LC(f._rep, f.lev, f.dom)) | |
def is_primitive(f): | |
"""Returns ``True`` if the GCD of the coefficients of ``f`` is one. """ | |
return f.dom.is_one(dmp_ground_content(f._rep, f.lev, f.dom)) | |
def is_linear(f): | |
"""Returns ``True`` if ``f`` is linear in all its variables. """ | |
return all(sum(monom) <= 1 for monom in dmp_to_dict(f._rep, f.lev, f.dom).keys()) | |
def is_quadratic(f): | |
"""Returns ``True`` if ``f`` is quadratic in all its variables. """ | |
return all(sum(monom) <= 2 for monom in dmp_to_dict(f._rep, f.lev, f.dom).keys()) | |
def is_monomial(f): | |
"""Returns ``True`` if ``f`` is zero or has only one term. """ | |
return len(f.to_dict()) <= 1 | |
def is_homogeneous(f): | |
"""Returns ``True`` if ``f`` is a homogeneous polynomial. """ | |
return f.homogeneous_order() is not None | |
def is_irreducible(f): | |
"""Returns ``True`` if ``f`` has no factors over its domain. """ | |
return dmp_irreducible_p(f._rep, f.lev, f.dom) | |
def is_cyclotomic(f): | |
"""Returns ``True`` if ``f`` is a cyclotomic polynomial. """ | |
if not f.lev: | |
return dup_cyclotomic_p(f._rep, f.dom) | |
else: | |
return False | |
class DUP_Flint(DMP): | |
"""Dense Multivariate Polynomials over `K`. """ | |
lev = 0 | |
__slots__ = ('_rep', 'dom', '_cls') | |
def __reduce__(self): | |
return self.__class__, (self.to_list(), self.dom, self.lev) | |
def _new(cls, rep, dom, lev): | |
rep = cls._flint_poly(rep[::-1], dom, lev) | |
return cls.from_rep(rep, dom) | |
def to_list(f): | |
"""Convert ``f`` to a list representation with native coefficients. """ | |
return f._rep.coeffs()[::-1] | |
def _flint_poly(cls, rep, dom, lev): | |
assert dom in _flint_domains | |
assert lev == 0 | |
flint_cls = cls._get_flint_poly_cls(dom) | |
return flint_cls(rep) | |
def _get_flint_poly_cls(cls, dom): | |
if dom.is_ZZ: | |
return flint.fmpz_poly | |
elif dom.is_QQ: | |
return flint.fmpq_poly | |
else: | |
raise RuntimeError("Domain %s is not supported with flint" % dom) | |
def from_rep(cls, rep, dom): | |
"""Create a DMP from the given representation. """ | |
if dom.is_ZZ: | |
assert isinstance(rep, flint.fmpz_poly) | |
_cls = flint.fmpz_poly | |
elif dom.is_QQ: | |
assert isinstance(rep, flint.fmpq_poly) | |
_cls = flint.fmpq_poly | |
else: | |
raise RuntimeError("Domain %s is not supported with flint" % dom) | |
obj = object.__new__(cls) | |
obj.dom = dom | |
obj._rep = rep | |
obj._cls = _cls | |
return obj | |
def _strict_eq(f, g): | |
if type(f) != type(g): | |
return False | |
return f.dom == g.dom and f._rep == g._rep | |
def ground_new(f, coeff): | |
"""Construct a new ground instance of ``f``. """ | |
return f.from_rep(f._cls([coeff]), f.dom) | |
def _one(f): | |
return f.ground_new(f.dom.one) | |
def unify(f, g): | |
"""Unify representations of two polynomials. """ | |
raise RuntimeError | |
def to_DMP_Python(f): | |
"""Convert ``f`` to a Python native representation. """ | |
return DMP_Python._new(f.to_list(), f.dom, f.lev) | |
def to_tuple(f): | |
"""Convert ``f`` to a tuple representation with native coefficients. """ | |
return tuple(f.to_list()) | |
def _convert(f, dom): | |
"""Convert the ground domain of ``f``. """ | |
if dom == QQ and f.dom == ZZ: | |
return f.from_rep(flint.fmpq_poly(f._rep), dom) | |
elif dom == ZZ and f.dom == QQ: | |
# XXX: python-flint should provide a faster way to do this. | |
return f.to_DMP_Python()._convert(dom).to_DUP_Flint() | |
else: | |
raise RuntimeError(f"DUP_Flint: Cannot convert {f.dom} to {dom}") | |
def _slice(f, m, n): | |
"""Take a continuous subsequence of terms of ``f``. """ | |
coeffs = f._rep.coeffs()[m:n] | |
return f.from_rep(f._cls(coeffs), f.dom) | |
def _slice_lev(f, m, n, j): | |
"""Take a continuous subsequence of terms of ``f``. """ | |
# Only makes sense for multivariate polynomials | |
raise NotImplementedError | |
def _terms(f, order=None): | |
"""Returns all non-zero terms from ``f`` in lex order. """ | |
if order is None or order.alias == 'lex': | |
terms = [ ((n,), c) for n, c in enumerate(f._rep.coeffs()) if c ] | |
return terms[::-1] | |
else: | |
# XXX: InverseOrder (ilex) comes here. We could handle that case | |
# efficiently by reversing the coefficients but it is not clear | |
# how to test if the order is InverseOrder. | |
# | |
# Otherwise why would the order ever be different for univariate | |
# polynomials? | |
return f.to_DMP_Python()._terms(order=order) | |
def _lift(f): | |
"""Convert algebraic coefficients to rationals. """ | |
# This is for algebraic number fields which DUP_Flint does not support | |
raise NotImplementedError | |
def deflate(f): | |
"""Reduce degree of `f` by mapping `x_i^m` to `y_i`. """ | |
# XXX: Check because otherwise this segfaults with python-flint: | |
# | |
# >>> flint.fmpz_poly([]).deflation() | |
# Exception (fmpz_poly_deflate). Division by zero. | |
# Aborted (core dumped | |
# | |
if f.is_zero: | |
return (1,), f | |
g, n = f._rep.deflation() | |
return (n,), f.from_rep(g, f.dom) | |
def inject(f, front=False): | |
"""Inject ground domain generators into ``f``. """ | |
# Ground domain would need to be a poly ring | |
raise NotImplementedError | |
def eject(f, dom, front=False): | |
"""Eject selected generators into the ground domain. """ | |
# Only makes sense for multivariate polynomials | |
raise NotImplementedError | |
def _exclude(f): | |
"""Remove useless generators from ``f``. """ | |
# Only makes sense for multivariate polynomials | |
raise NotImplementedError | |
def _permute(f, P): | |
"""Returns a polynomial in `K[x_{P(1)}, ..., x_{P(n)}]`. """ | |
# Only makes sense for multivariate polynomials | |
raise NotImplementedError | |
def terms_gcd(f): | |
"""Remove GCD of terms from the polynomial ``f``. """ | |
# XXX: python-flint should have primitive, content, etc methods. | |
J, F = f.to_DMP_Python().terms_gcd() | |
return J, F.to_DUP_Flint() | |
def _add_ground(f, c): | |
"""Add an element of the ground domain to ``f``. """ | |
return f.from_rep(f._rep + c, f.dom) | |
def _sub_ground(f, c): | |
"""Subtract an element of the ground domain from ``f``. """ | |
return f.from_rep(f._rep - c, f.dom) | |
def _mul_ground(f, c): | |
"""Multiply ``f`` by a an element of the ground domain. """ | |
return f.from_rep(f._rep * c, f.dom) | |
def _quo_ground(f, c): | |
"""Quotient of ``f`` by a an element of the ground domain. """ | |
return f.from_rep(f._rep // c, f.dom) | |
def _exquo_ground(f, c): | |
"""Exact quotient of ``f`` by a an element of the ground domain. """ | |
q, r = divmod(f._rep, c) | |
if r: | |
raise ExactQuotientFailed(f, c) | |
return f.from_rep(q, f.dom) | |
def abs(f): | |
"""Make all coefficients in ``f`` positive. """ | |
return f.to_DMP_Python().abs().to_DUP_Flint() | |
def neg(f): | |
"""Negate all coefficients in ``f``. """ | |
return f.from_rep(-f._rep, f.dom) | |
def _add(f, g): | |
"""Add two multivariate polynomials ``f`` and ``g``. """ | |
return f.from_rep(f._rep + g._rep, f.dom) | |
def _sub(f, g): | |
"""Subtract two multivariate polynomials ``f`` and ``g``. """ | |
return f.from_rep(f._rep - g._rep, f.dom) | |
def _mul(f, g): | |
"""Multiply two multivariate polynomials ``f`` and ``g``. """ | |
return f.from_rep(f._rep * g._rep, f.dom) | |
def sqr(f): | |
"""Square a multivariate polynomial ``f``. """ | |
return f.from_rep(f._rep ** 2, f.dom) | |
def _pow(f, n): | |
"""Raise ``f`` to a non-negative power ``n``. """ | |
return f.from_rep(f._rep ** n, f.dom) | |
def _pdiv(f, g): | |
"""Polynomial pseudo-division of ``f`` and ``g``. """ | |
d = f.degree() - g.degree() + 1 | |
q, r = divmod(g.LC()**d * f._rep, g._rep) | |
return f.from_rep(q, f.dom), f.from_rep(r, f.dom) | |
def _prem(f, g): | |
"""Polynomial pseudo-remainder of ``f`` and ``g``. """ | |
d = f.degree() - g.degree() + 1 | |
q = (g.LC()**d * f._rep) % g._rep | |
return f.from_rep(q, f.dom) | |
def _pquo(f, g): | |
"""Polynomial pseudo-quotient of ``f`` and ``g``. """ | |
d = f.degree() - g.degree() + 1 | |
r = (g.LC()**d * f._rep) // g._rep | |
return f.from_rep(r, f.dom) | |
def _pexquo(f, g): | |
"""Polynomial exact pseudo-quotient of ``f`` and ``g``. """ | |
d = f.degree() - g.degree() + 1 | |
q, r = divmod(g.LC()**d * f._rep, g._rep) | |
if r: | |
raise ExactQuotientFailed(f, g) | |
return f.from_rep(q, f.dom) | |
def _div(f, g): | |
"""Polynomial division with remainder of ``f`` and ``g``. """ | |
if f.dom.is_Field: | |
q, r = divmod(f._rep, g._rep) | |
return f.from_rep(q, f.dom), f.from_rep(r, f.dom) | |
else: | |
# XXX: python-flint defines division in ZZ[x] differently | |
q, r = f.to_DMP_Python()._div(g.to_DMP_Python()) | |
return q.to_DUP_Flint(), r.to_DUP_Flint() | |
def _rem(f, g): | |
"""Computes polynomial remainder of ``f`` and ``g``. """ | |
return f.from_rep(f._rep % g._rep, f.dom) | |
def _quo(f, g): | |
"""Computes polynomial quotient of ``f`` and ``g``. """ | |
return f.from_rep(f._rep // g._rep, f.dom) | |
def _exquo(f, g): | |
"""Computes polynomial exact quotient of ``f`` and ``g``. """ | |
q, r = f._div(g) | |
if r: | |
raise ExactQuotientFailed(f, g) | |
return q | |
def _degree(f, j=0): | |
"""Returns the leading degree of ``f`` in ``x_j``. """ | |
d = f._rep.degree() | |
if d == -1: | |
d = ninf | |
return d | |
def degree_list(f): | |
"""Returns a list of degrees of ``f``. """ | |
return ( f._degree() ,) | |
def total_degree(f): | |
"""Returns the total degree of ``f``. """ | |
return f._degree() | |
def LC(f): | |
"""Returns the leading coefficient of ``f``. """ | |
return f._rep[f._rep.degree()] | |
def TC(f): | |
"""Returns the trailing coefficient of ``f``. """ | |
return f._rep[0] | |
def _nth(f, N): | |
"""Returns the ``n``-th coefficient of ``f``. """ | |
[n] = N | |
return f._rep[n] | |
def max_norm(f): | |
"""Returns maximum norm of ``f``. """ | |
return f.to_DMP_Python().max_norm() | |
def l1_norm(f): | |
"""Returns l1 norm of ``f``. """ | |
return f.to_DMP_Python().l1_norm() | |
def l2_norm_squared(f): | |
"""Return squared l2 norm of ``f``. """ | |
return f.to_DMP_Python().l2_norm_squared() | |
def clear_denoms(f): | |
"""Clear denominators, but keep the ground domain. """ | |
denom = f._rep.denom() | |
numer = f.from_rep(f._cls(f._rep.numer()), f.dom) | |
return denom, numer | |
def _integrate(f, m=1, j=0): | |
"""Computes the ``m``-th order indefinite integral of ``f`` in ``x_j``. """ | |
assert j == 0 | |
if f.dom.is_QQ: | |
rep = f._rep | |
for i in range(m): | |
rep = rep.integral() | |
return f.from_rep(rep, f.dom) | |
else: | |
return f.to_DMP_Python()._integrate(m=m, j=j).to_DUP_Flint() | |
def _diff(f, m=1, j=0): | |
"""Computes the ``m``-th order derivative of ``f``. """ | |
assert j == 0 | |
rep = f._rep | |
for i in range(m): | |
rep = rep.derivative() | |
return f.from_rep(rep, f.dom) | |
def _eval(f, a): | |
return f.to_DMP_Python()._eval(a) | |
def _eval_lev(f, a, j): | |
# Only makes sense for multivariate polynomials | |
raise NotImplementedError | |
def _half_gcdex(f, g): | |
"""Half extended Euclidean algorithm. """ | |
s, h = f.to_DMP_Python()._half_gcdex(g.to_DMP_Python()) | |
return s.to_DUP_Flint(), h.to_DUP_Flint() | |
def _gcdex(f, g): | |
"""Extended Euclidean algorithm. """ | |
h, s, t = f._rep.xgcd(g._rep) | |
return f.from_rep(s, f.dom), f.from_rep(t, f.dom), f.from_rep(h, f.dom) | |
def _invert(f, g): | |
"""Invert ``f`` modulo ``g``, if possible. """ | |
if f.dom.is_QQ: | |
gcd, F_inv, _ = f._rep.xgcd(g._rep) | |
if gcd != 1: | |
raise NotInvertible("zero divisor") | |
return f.from_rep(F_inv, f.dom) | |
else: | |
return f.to_DMP_Python()._invert(g.to_DMP_Python()).to_DUP_Flint() | |
def _revert(f, n): | |
"""Compute ``f**(-1)`` mod ``x**n``. """ | |
return f.to_DMP_Python()._revert(n).to_DUP_Flint() | |
def _subresultants(f, g): | |
"""Computes subresultant PRS sequence of ``f`` and ``g``. """ | |
R = f.to_DMP_Python()._subresultants(g.to_DMP_Python()) | |
return [ g.to_DUP_Flint() for g in R ] | |
def _resultant_includePRS(f, g): | |
"""Computes resultant of ``f`` and ``g`` via PRS. """ | |
res, R = f.to_DMP_Python()._resultant_includePRS(g.to_DMP_Python()) | |
return res, [ g.to_DUP_Flint() for g in R ] | |
def _resultant(f, g): | |
"""Computes resultant of ``f`` and ``g``. """ | |
return f.to_DMP_Python()._resultant(g.to_DMP_Python()) | |
def discriminant(f): | |
"""Computes discriminant of ``f``. """ | |
return f.to_DMP_Python().discriminant() | |
def _cofactors(f, g): | |
"""Returns GCD of ``f`` and ``g`` and their cofactors. """ | |
h = f.gcd(g) | |
return h, f.exquo(h), g.exquo(h) | |
def _gcd(f, g): | |
"""Returns polynomial GCD of ``f`` and ``g``. """ | |
return f.from_rep(f._rep.gcd(g._rep), f.dom) | |
def _lcm(f, g): | |
"""Returns polynomial LCM of ``f`` and ``g``. """ | |
# XXX: python-flint should have a lcm method | |
if not (f and g): | |
return f.ground_new(f.dom.zero) | |
l = f._mul(g)._exquo(f._gcd(g)) | |
if l.dom.is_Field: | |
l = l.monic() | |
elif l.LC() < 0: | |
l = l.neg() | |
return l | |
def _cancel(f, g): | |
"""Cancel common factors in a rational function ``f/g``. """ | |
# Think carefully about how to handle denominators and coefficient | |
# canonicalisation if more domains are permitted... | |
assert f.dom == g.dom in (ZZ, QQ) | |
if f.dom.is_QQ: | |
cG, F = f.clear_denoms() | |
cF, G = g.clear_denoms() | |
else: | |
cG, F = f.dom.one, f | |
cF, G = g.dom.one, g | |
cH = cF.gcd(cG) | |
cF, cG = cF // cH, cG // cH | |
H = F._gcd(G) | |
F, G = F.exquo(H), G.exquo(H) | |
f_neg = F.LC() < 0 | |
g_neg = G.LC() < 0 | |
if f_neg and g_neg: | |
F, G = F.neg(), G.neg() | |
elif f_neg: | |
cF, F = -cF, F.neg() | |
elif g_neg: | |
cF, G = -cF, G.neg() | |
return cF, cG, F, G | |
def _cancel_include(f, g): | |
"""Cancel common factors in a rational function ``f/g``. """ | |
cF, cG, F, G = f._cancel(g) | |
return F._mul_ground(cF), G._mul_ground(cG) | |
def _trunc(f, p): | |
"""Reduce ``f`` modulo a constant ``p``. """ | |
return f.to_DMP_Python()._trunc(p).to_DUP_Flint() | |
def monic(f): | |
"""Divides all coefficients by ``LC(f)``. """ | |
return f._exquo_ground(f.LC()) | |
def content(f): | |
"""Returns GCD of polynomial coefficients. """ | |
# XXX: python-flint should have a content method | |
return f.to_DMP_Python().content() | |
def primitive(f): | |
"""Returns content and a primitive form of ``f``. """ | |
cont = f.content() | |
prim = f._exquo_ground(cont) | |
return cont, prim | |
def _compose(f, g): | |
"""Computes functional composition of ``f`` and ``g``. """ | |
return f.from_rep(f._rep(g._rep), f.dom) | |
def _decompose(f): | |
"""Computes functional decomposition of ``f``. """ | |
return [ g.to_DUP_Flint() for g in f.to_DMP_Python()._decompose() ] | |
def _shift(f, a): | |
"""Efficiently compute Taylor shift ``f(x + a)``. """ | |
x_plus_a = f._cls([a, f.dom.one]) | |
return f.from_rep(f._rep(x_plus_a), f.dom) | |
def _transform(f, p, q): | |
"""Evaluate functional transformation ``q**n * f(p/q)``.""" | |
F, P, Q = f.to_DMP_Python(), p.to_DMP_Python(), q.to_DMP_Python() | |
return F.transform(P, Q).to_DUP_Flint() | |
def _sturm(f): | |
"""Computes the Sturm sequence of ``f``. """ | |
return [ g.to_DUP_Flint() for g in f.to_DMP_Python()._sturm() ] | |
def _cauchy_upper_bound(f): | |
"""Computes the Cauchy upper bound on the roots of ``f``. """ | |
return f.to_DMP_Python()._cauchy_upper_bound() | |
def _cauchy_lower_bound(f): | |
"""Computes the Cauchy lower bound on the nonzero roots of ``f``. """ | |
return f.to_DMP_Python()._cauchy_lower_bound() | |
def _mignotte_sep_bound_squared(f): | |
"""Computes the squared Mignotte bound on root separations of ``f``. """ | |
return f.to_DMP_Python()._mignotte_sep_bound_squared() | |
def _gff_list(f): | |
"""Computes greatest factorial factorization of ``f``. """ | |
F = f.to_DMP_Python() | |
return [ (g.to_DUP_Flint(), k) for g, k in F.gff_list() ] | |
def norm(f): | |
"""Computes ``Norm(f)``.""" | |
# This is for algebraic number fields which DUP_Flint does not support | |
raise NotImplementedError | |
def sqf_norm(f): | |
"""Computes square-free norm of ``f``. """ | |
# This is for algebraic number fields which DUP_Flint does not support | |
raise NotImplementedError | |
def sqf_part(f): | |
"""Computes square-free part of ``f``. """ | |
return f._exquo(f._gcd(f._diff())) | |
def sqf_list(f, all=False): | |
"""Returns a list of square-free factors of ``f``. """ | |
coeff, factors = f.to_DMP_Python().sqf_list(all=all) | |
return coeff, [ (g.to_DUP_Flint(), k) for g, k in factors ] | |
def sqf_list_include(f, all=False): | |
"""Returns a list of square-free factors of ``f``. """ | |
factors = f.to_DMP_Python().sqf_list_include(all=all) | |
return [ (g.to_DUP_Flint(), k) for g, k in factors ] | |
def factor_list(f): | |
"""Returns a list of irreducible factors of ``f``. """ | |
if f.dom.is_ZZ: | |
# python-flint matches polys here | |
coeff, factors = f._rep.factor() | |
factors = [ (f.from_rep(g, f.dom), k) for g, k in factors ] | |
elif f.dom.is_QQ: | |
# python-flint returns monic factors over QQ whereas polys returns | |
# denominator free factors. | |
coeff, factors = f._rep.factor() | |
factors_monic = [ (f.from_rep(g, f.dom), k) for g, k in factors ] | |
# Absorb the denominators into coeff | |
factors = [] | |
for g, k in factors_monic: | |
d, g = g.clear_denoms() | |
coeff /= d**k | |
factors.append((g, k)) | |
else: | |
# Check carefully when adding more domains here... | |
raise RuntimeError("Domain %s is not supported with flint" % f.dom) | |
# We need to match the way that polys orders the factors | |
factors = f._sort_factors(factors) | |
return coeff, factors | |
def factor_list_include(f): | |
"""Returns a list of irreducible factors of ``f``. """ | |
# XXX: factor_list_include seems to be broken in general: | |
# | |
# >>> Poly(2*(x - 1)**3, x).factor_list_include() | |
# [(Poly(2*x - 2, x, domain='ZZ'), 3)] | |
# | |
# Let's not try to implement it here. | |
factors = f.to_DMP_Python().factor_list_include() | |
return [ (g.to_DUP_Flint(), k) for g, k in factors ] | |
def _sort_factors(f, factors): | |
"""Sort a list of factors to canonical order. """ | |
# Convert the factors to lists and use _sort_factors from polys | |
factors = [ (g.to_list(), k) for g, k in factors ] | |
factors = _sort_factors(factors, multiple=True) | |
to_dup_flint = lambda g: f.from_rep(f._cls(g[::-1]), f.dom) | |
return [ (to_dup_flint(g), k) for g, k in factors ] | |
def _isolate_real_roots(f, eps, inf, sup, fast): | |
return f.to_DMP_Python()._isolate_real_roots(eps, inf, sup, fast) | |
def _isolate_real_roots_sqf(f, eps, inf, sup, fast): | |
return f.to_DMP_Python()._isolate_real_roots_sqf(eps, inf, sup, fast) | |
def _isolate_all_roots(f, eps, inf, sup, fast): | |
return f.to_DMP_Python()._isolate_all_roots(eps, inf, sup, fast) | |
def _isolate_all_roots_sqf(f, eps, inf, sup, fast): | |
return f.to_DMP_Python()._isolate_all_roots_sqf(eps, inf, sup, fast) | |
def _refine_real_root(f, s, t, eps, steps, fast): | |
return f.to_DMP_Python()._refine_real_root(s, t, eps, steps, fast) | |
def count_real_roots(f, inf=None, sup=None): | |
"""Return the number of real roots of ``f`` in ``[inf, sup]``. """ | |
return f.to_DMP_Python().count_real_roots(inf=inf, sup=sup) | |
def count_complex_roots(f, inf=None, sup=None): | |
"""Return the number of complex roots of ``f`` in ``[inf, sup]``. """ | |
return f.to_DMP_Python().count_complex_roots(inf=inf, sup=sup) | |
def is_zero(f): | |
"""Returns ``True`` if ``f`` is a zero polynomial. """ | |
return not f._rep | |
def is_one(f): | |
"""Returns ``True`` if ``f`` is a unit polynomial. """ | |
return f._rep == f.dom.one | |
def is_ground(f): | |
"""Returns ``True`` if ``f`` is an element of the ground domain. """ | |
return f._rep.degree() <= 0 | |
def is_linear(f): | |
"""Returns ``True`` if ``f`` is linear in all its variables. """ | |
return f._rep.degree() <= 1 | |
def is_quadratic(f): | |
"""Returns ``True`` if ``f`` is quadratic in all its variables. """ | |
return f._rep.degree() <= 2 | |
def is_monomial(f): | |
"""Returns ``True`` if ``f`` is zero or has only one term. """ | |
return f.to_DMP_Python().is_monomial | |
def is_monic(f): | |
"""Returns ``True`` if the leading coefficient of ``f`` is one. """ | |
return f.LC() == f.dom.one | |
def is_primitive(f): | |
"""Returns ``True`` if the GCD of the coefficients of ``f`` is one. """ | |
return f.to_DMP_Python().is_primitive | |
def is_homogeneous(f): | |
"""Returns ``True`` if ``f`` is a homogeneous polynomial. """ | |
return f.to_DMP_Python().is_homogeneous | |
def is_sqf(f): | |
"""Returns ``True`` if ``f`` is a square-free polynomial. """ | |
return f.to_DMP_Python().is_sqf | |
def is_irreducible(f): | |
"""Returns ``True`` if ``f`` has no factors over its domain. """ | |
return f.to_DMP_Python().is_irreducible | |
def is_cyclotomic(f): | |
"""Returns ``True`` if ``f`` is a cyclotomic polynomial. """ | |
if f.dom.is_ZZ: | |
return bool(f._rep.is_cyclotomic()) | |
else: | |
return f.to_DMP_Python().is_cyclotomic | |
def init_normal_DMF(num, den, lev, dom): | |
return DMF(dmp_normal(num, lev, dom), | |
dmp_normal(den, lev, dom), dom, lev) | |
class DMF(PicklableWithSlots, CantSympify): | |
"""Dense Multivariate Fractions over `K`. """ | |
__slots__ = ('num', 'den', 'lev', 'dom') | |
def __init__(self, rep, dom, lev=None): | |
num, den, lev = self._parse(rep, dom, lev) | |
num, den = dmp_cancel(num, den, lev, dom) | |
self.num = num | |
self.den = den | |
self.lev = lev | |
self.dom = dom | |
def new(cls, rep, dom, lev=None): | |
num, den, lev = cls._parse(rep, dom, lev) | |
obj = object.__new__(cls) | |
obj.num = num | |
obj.den = den | |
obj.lev = lev | |
obj.dom = dom | |
return obj | |
def ground_new(self, rep): | |
return self.new(rep, self.dom, self.lev) | |
def _parse(cls, rep, dom, lev=None): | |
if isinstance(rep, tuple): | |
num, den = rep | |
if lev is not None: | |
if isinstance(num, dict): | |
num = dmp_from_dict(num, lev, dom) | |
if isinstance(den, dict): | |
den = dmp_from_dict(den, lev, dom) | |
else: | |
num, num_lev = dmp_validate(num) | |
den, den_lev = dmp_validate(den) | |
if num_lev == den_lev: | |
lev = num_lev | |
else: | |
raise ValueError('inconsistent number of levels') | |
if dmp_zero_p(den, lev): | |
raise ZeroDivisionError('fraction denominator') | |
if dmp_zero_p(num, lev): | |
den = dmp_one(lev, dom) | |
else: | |
if dmp_negative_p(den, lev, dom): | |
num = dmp_neg(num, lev, dom) | |
den = dmp_neg(den, lev, dom) | |
else: | |
num = rep | |
if lev is not None: | |
if isinstance(num, dict): | |
num = dmp_from_dict(num, lev, dom) | |
elif not isinstance(num, list): | |
num = dmp_ground(dom.convert(num), lev) | |
else: | |
num, lev = dmp_validate(num) | |
den = dmp_one(lev, dom) | |
return num, den, lev | |
def __repr__(f): | |
return "%s((%s, %s), %s)" % (f.__class__.__name__, f.num, f.den, f.dom) | |
def __hash__(f): | |
return hash((f.__class__.__name__, dmp_to_tuple(f.num, f.lev), | |
dmp_to_tuple(f.den, f.lev), f.lev, f.dom)) | |
def poly_unify(f, g): | |
"""Unify a multivariate fraction and a polynomial. """ | |
if not isinstance(g, DMP) or f.lev != g.lev: | |
raise UnificationFailed("Cannot unify %s with %s" % (f, g)) | |
if f.dom == g.dom: | |
return (f.lev, f.dom, f.per, (f.num, f.den), g._rep) | |
else: | |
lev, dom = f.lev, f.dom.unify(g.dom) | |
F = (dmp_convert(f.num, lev, f.dom, dom), | |
dmp_convert(f.den, lev, f.dom, dom)) | |
G = dmp_convert(g._rep, lev, g.dom, dom) | |
def per(num, den, cancel=True, kill=False, lev=lev): | |
if kill: | |
if not lev: | |
return num/den | |
else: | |
lev = lev - 1 | |
if cancel: | |
num, den = dmp_cancel(num, den, lev, dom) | |
return f.__class__.new((num, den), dom, lev) | |
return lev, dom, per, F, G | |
def frac_unify(f, g): | |
"""Unify representations of two multivariate fractions. """ | |
if not isinstance(g, DMF) or f.lev != g.lev: | |
raise UnificationFailed("Cannot unify %s with %s" % (f, g)) | |
if f.dom == g.dom: | |
return (f.lev, f.dom, f.per, (f.num, f.den), | |
(g.num, g.den)) | |
else: | |
lev, dom = f.lev, f.dom.unify(g.dom) | |
F = (dmp_convert(f.num, lev, f.dom, dom), | |
dmp_convert(f.den, lev, f.dom, dom)) | |
G = (dmp_convert(g.num, lev, g.dom, dom), | |
dmp_convert(g.den, lev, g.dom, dom)) | |
def per(num, den, cancel=True, kill=False, lev=lev): | |
if kill: | |
if not lev: | |
return num/den | |
else: | |
lev = lev - 1 | |
if cancel: | |
num, den = dmp_cancel(num, den, lev, dom) | |
return f.__class__.new((num, den), dom, lev) | |
return lev, dom, per, F, G | |
def per(f, num, den, cancel=True, kill=False): | |
"""Create a DMF out of the given representation. """ | |
lev, dom = f.lev, f.dom | |
if kill: | |
if not lev: | |
return num/den | |
else: | |
lev -= 1 | |
if cancel: | |
num, den = dmp_cancel(num, den, lev, dom) | |
return f.__class__.new((num, den), dom, lev) | |
def half_per(f, rep, kill=False): | |
"""Create a DMP out of the given representation. """ | |
lev = f.lev | |
if kill: | |
if not lev: | |
return rep | |
else: | |
lev -= 1 | |
return DMP(rep, f.dom, lev) | |
def zero(cls, lev, dom): | |
return cls.new(0, dom, lev) | |
def one(cls, lev, dom): | |
return cls.new(1, dom, lev) | |
def numer(f): | |
"""Returns the numerator of ``f``. """ | |
return f.half_per(f.num) | |
def denom(f): | |
"""Returns the denominator of ``f``. """ | |
return f.half_per(f.den) | |
def cancel(f): | |
"""Remove common factors from ``f.num`` and ``f.den``. """ | |
return f.per(f.num, f.den) | |
def neg(f): | |
"""Negate all coefficients in ``f``. """ | |
return f.per(dmp_neg(f.num, f.lev, f.dom), f.den, cancel=False) | |
def add_ground(f, c): | |
"""Add an element of the ground domain to ``f``. """ | |
return f + f.ground_new(c) | |
def add(f, g): | |
"""Add two multivariate fractions ``f`` and ``g``. """ | |
if isinstance(g, DMP): | |
lev, dom, per, (F_num, F_den), G = f.poly_unify(g) | |
num, den = dmp_add_mul(F_num, F_den, G, lev, dom), F_den | |
else: | |
lev, dom, per, F, G = f.frac_unify(g) | |
(F_num, F_den), (G_num, G_den) = F, G | |
num = dmp_add(dmp_mul(F_num, G_den, lev, dom), | |
dmp_mul(F_den, G_num, lev, dom), lev, dom) | |
den = dmp_mul(F_den, G_den, lev, dom) | |
return per(num, den) | |
def sub(f, g): | |
"""Subtract two multivariate fractions ``f`` and ``g``. """ | |
if isinstance(g, DMP): | |
lev, dom, per, (F_num, F_den), G = f.poly_unify(g) | |
num, den = dmp_sub_mul(F_num, F_den, G, lev, dom), F_den | |
else: | |
lev, dom, per, F, G = f.frac_unify(g) | |
(F_num, F_den), (G_num, G_den) = F, G | |
num = dmp_sub(dmp_mul(F_num, G_den, lev, dom), | |
dmp_mul(F_den, G_num, lev, dom), lev, dom) | |
den = dmp_mul(F_den, G_den, lev, dom) | |
return per(num, den) | |
def mul(f, g): | |
"""Multiply two multivariate fractions ``f`` and ``g``. """ | |
if isinstance(g, DMP): | |
lev, dom, per, (F_num, F_den), G = f.poly_unify(g) | |
num, den = dmp_mul(F_num, G, lev, dom), F_den | |
else: | |
lev, dom, per, F, G = f.frac_unify(g) | |
(F_num, F_den), (G_num, G_den) = F, G | |
num = dmp_mul(F_num, G_num, lev, dom) | |
den = dmp_mul(F_den, G_den, lev, dom) | |
return per(num, den) | |
def pow(f, n): | |
"""Raise ``f`` to a non-negative power ``n``. """ | |
if isinstance(n, int): | |
num, den = f.num, f.den | |
if n < 0: | |
num, den, n = den, num, -n | |
return f.per(dmp_pow(num, n, f.lev, f.dom), | |
dmp_pow(den, n, f.lev, f.dom), cancel=False) | |
else: | |
raise TypeError("``int`` expected, got %s" % type(n)) | |
def quo(f, g): | |
"""Computes quotient of fractions ``f`` and ``g``. """ | |
if isinstance(g, DMP): | |
lev, dom, per, (F_num, F_den), G = f.poly_unify(g) | |
num, den = F_num, dmp_mul(F_den, G, lev, dom) | |
else: | |
lev, dom, per, F, G = f.frac_unify(g) | |
(F_num, F_den), (G_num, G_den) = F, G | |
num = dmp_mul(F_num, G_den, lev, dom) | |
den = dmp_mul(F_den, G_num, lev, dom) | |
return per(num, den) | |
exquo = quo | |
def invert(f, check=True): | |
"""Computes inverse of a fraction ``f``. """ | |
return f.per(f.den, f.num, cancel=False) | |
def is_zero(f): | |
"""Returns ``True`` if ``f`` is a zero fraction. """ | |
return dmp_zero_p(f.num, f.lev) | |
def is_one(f): | |
"""Returns ``True`` if ``f`` is a unit fraction. """ | |
return dmp_one_p(f.num, f.lev, f.dom) and \ | |
dmp_one_p(f.den, f.lev, f.dom) | |
def __neg__(f): | |
return f.neg() | |
def __add__(f, g): | |
if isinstance(g, (DMP, DMF)): | |
return f.add(g) | |
elif g in f.dom: | |
return f.add_ground(f.dom.convert(g)) | |
try: | |
return f.add(f.half_per(g)) | |
except (TypeError, CoercionFailed, NotImplementedError): | |
return NotImplemented | |
def __radd__(f, g): | |
return f.__add__(g) | |
def __sub__(f, g): | |
if isinstance(g, (DMP, DMF)): | |
return f.sub(g) | |
try: | |
return f.sub(f.half_per(g)) | |
except (TypeError, CoercionFailed, NotImplementedError): | |
return NotImplemented | |
def __rsub__(f, g): | |
return (-f).__add__(g) | |
def __mul__(f, g): | |
if isinstance(g, (DMP, DMF)): | |
return f.mul(g) | |
try: | |
return f.mul(f.half_per(g)) | |
except (TypeError, CoercionFailed, NotImplementedError): | |
return NotImplemented | |
def __rmul__(f, g): | |
return f.__mul__(g) | |
def __pow__(f, n): | |
return f.pow(n) | |
def __truediv__(f, g): | |
if isinstance(g, (DMP, DMF)): | |
return f.quo(g) | |
try: | |
return f.quo(f.half_per(g)) | |
except (TypeError, CoercionFailed, NotImplementedError): | |
return NotImplemented | |
def __rtruediv__(self, g): | |
return self.invert(check=False)*g | |
def __eq__(f, g): | |
try: | |
if isinstance(g, DMP): | |
_, _, _, (F_num, F_den), G = f.poly_unify(g) | |
if f.lev == g.lev: | |
return dmp_one_p(F_den, f.lev, f.dom) and F_num == G | |
else: | |
_, _, _, F, G = f.frac_unify(g) | |
if f.lev == g.lev: | |
return F == G | |
except UnificationFailed: | |
pass | |
return False | |
def __ne__(f, g): | |
try: | |
if isinstance(g, DMP): | |
_, _, _, (F_num, F_den), G = f.poly_unify(g) | |
if f.lev == g.lev: | |
return not (dmp_one_p(F_den, f.lev, f.dom) and F_num == G) | |
else: | |
_, _, _, F, G = f.frac_unify(g) | |
if f.lev == g.lev: | |
return F != G | |
except UnificationFailed: | |
pass | |
return True | |
def __lt__(f, g): | |
_, _, _, F, G = f.frac_unify(g) | |
return F < G | |
def __le__(f, g): | |
_, _, _, F, G = f.frac_unify(g) | |
return F <= G | |
def __gt__(f, g): | |
_, _, _, F, G = f.frac_unify(g) | |
return F > G | |
def __ge__(f, g): | |
_, _, _, F, G = f.frac_unify(g) | |
return F >= G | |
def __bool__(f): | |
return not dmp_zero_p(f.num, f.lev) | |
def init_normal_ANP(rep, mod, dom): | |
return ANP(dup_normal(rep, dom), | |
dup_normal(mod, dom), dom) | |
class ANP(CantSympify): | |
"""Dense Algebraic Number Polynomials over a field. """ | |
__slots__ = ('_rep', '_mod', 'dom') | |
def __new__(cls, rep, mod, dom): | |
if isinstance(rep, DMP): | |
pass | |
elif type(rep) is dict: # don't use isinstance | |
rep = DMP(dup_from_dict(rep, dom), dom, 0) | |
else: | |
if isinstance(rep, list): | |
rep = [dom.convert(a) for a in rep] | |
else: | |
rep = [dom.convert(rep)] | |
rep = DMP(dup_strip(rep), dom, 0) | |
if isinstance(mod, DMP): | |
pass | |
elif isinstance(mod, dict): | |
mod = DMP(dup_from_dict(mod, dom), dom, 0) | |
else: | |
mod = DMP(dup_strip(mod), dom, 0) | |
return cls.new(rep, mod, dom) | |
def new(cls, rep, mod, dom): | |
if not (rep.dom == mod.dom == dom): | |
raise RuntimeError("Inconsistent domain") | |
obj = super().__new__(cls) | |
obj._rep = rep | |
obj._mod = mod | |
obj.dom = dom | |
return obj | |
# XXX: It should be possible to use __getnewargs__ rather than __reduce__ | |
# but it doesn't work for some reason. Probably this would be easier if | |
# python-flint supported pickling for polynomial types. | |
def __reduce__(self): | |
return ANP, (self.rep, self.mod, self.dom) | |
def rep(self): | |
return self._rep.to_list() | |
def mod(self): | |
return self.mod_to_list() | |
def to_DMP(self): | |
return self._rep | |
def mod_to_DMP(self): | |
return self._mod | |
def per(f, rep): | |
return f.new(rep, f._mod, f.dom) | |
def __repr__(f): | |
return "%s(%s, %s, %s)" % (f.__class__.__name__, f._rep.to_list(), f._mod.to_list(), f.dom) | |
def __hash__(f): | |
return hash((f.__class__.__name__, f.to_tuple(), f._mod.to_tuple(), f.dom)) | |
def convert(f, dom): | |
"""Convert ``f`` to a ``ANP`` over a new domain. """ | |
if f.dom == dom: | |
return f | |
else: | |
return f.new(f._rep.convert(dom), f._mod.convert(dom), dom) | |
def unify(f, g): | |
"""Unify representations of two algebraic numbers. """ | |
# XXX: This unify method is not used any more because unify_ANP is used | |
# instead. | |
if not isinstance(g, ANP) or f.mod != g.mod: | |
raise UnificationFailed("Cannot unify %s with %s" % (f, g)) | |
if f.dom == g.dom: | |
return f.dom, f.per, f.rep, g.rep, f.mod | |
else: | |
dom = f.dom.unify(g.dom) | |
F = dup_convert(f.rep, f.dom, dom) | |
G = dup_convert(g.rep, g.dom, dom) | |
if dom != f.dom and dom != g.dom: | |
mod = dup_convert(f.mod, f.dom, dom) | |
else: | |
if dom == f.dom: | |
mod = f.mod | |
else: | |
mod = g.mod | |
per = lambda rep: ANP(rep, mod, dom) | |
return dom, per, F, G, mod | |
def unify_ANP(f, g): | |
"""Unify and return ``DMP`` instances of ``f`` and ``g``. """ | |
if not isinstance(g, ANP) or f._mod != g._mod: | |
raise UnificationFailed("Cannot unify %s with %s" % (f, g)) | |
# The domain is almost always QQ but there are some tests involving ZZ | |
if f.dom != g.dom: | |
dom = f.dom.unify(g.dom) | |
f = f.convert(dom) | |
g = g.convert(dom) | |
return f._rep, g._rep, f._mod, f.dom | |
def zero(cls, mod, dom): | |
return ANP(0, mod, dom) | |
def one(cls, mod, dom): | |
return ANP(1, mod, dom) | |
def to_dict(f): | |
"""Convert ``f`` to a dict representation with native coefficients. """ | |
return f._rep.to_dict() | |
def to_sympy_dict(f): | |
"""Convert ``f`` to a dict representation with SymPy coefficients. """ | |
rep = dmp_to_dict(f.rep, 0, f.dom) | |
for k, v in rep.items(): | |
rep[k] = f.dom.to_sympy(v) | |
return rep | |
def to_list(f): | |
"""Convert ``f`` to a list representation with native coefficients. """ | |
return f._rep.to_list() | |
def mod_to_list(f): | |
"""Return ``f.mod`` as a list with native coefficients. """ | |
return f._mod.to_list() | |
def to_sympy_list(f): | |
"""Convert ``f`` to a list representation with SymPy coefficients. """ | |
return [ f.dom.to_sympy(c) for c in f.to_list() ] | |
def to_tuple(f): | |
""" | |
Convert ``f`` to a tuple representation with native coefficients. | |
This is needed for hashing. | |
""" | |
return f._rep.to_tuple() | |
def from_list(cls, rep, mod, dom): | |
return ANP(dup_strip(list(map(dom.convert, rep))), mod, dom) | |
def add_ground(f, c): | |
"""Add an element of the ground domain to ``f``. """ | |
return f.per(f._rep.add_ground(c)) | |
def sub_ground(f, c): | |
"""Subtract an element of the ground domain from ``f``. """ | |
return f.per(f._rep.sub_ground(c)) | |
def mul_ground(f, c): | |
"""Multiply ``f`` by an element of the ground domain. """ | |
return f.per(f._rep.mul_ground(c)) | |
def quo_ground(f, c): | |
"""Quotient of ``f`` by an element of the ground domain. """ | |
return f.per(f._rep.quo_ground(c)) | |
def neg(f): | |
return f.per(f._rep.neg()) | |
def add(f, g): | |
F, G, mod, dom = f.unify_ANP(g) | |
return f.new(F.add(G), mod, dom) | |
def sub(f, g): | |
F, G, mod, dom = f.unify_ANP(g) | |
return f.new(F.sub(G), mod, dom) | |
def mul(f, g): | |
F, G, mod, dom = f.unify_ANP(g) | |
return f.new(F.mul(G).rem(mod), mod, dom) | |
def pow(f, n): | |
"""Raise ``f`` to a non-negative power ``n``. """ | |
if not isinstance(n, int): | |
raise TypeError("``int`` expected, got %s" % type(n)) | |
mod = f._mod | |
F = f._rep | |
if n < 0: | |
F, n = F.invert(mod), -n | |
# XXX: Need a pow_mod method for DMP | |
return f.new(F.pow(n).rem(f._mod), mod, f.dom) | |
def exquo(f, g): | |
F, G, mod, dom = f.unify_ANP(g) | |
return f.new(F.mul(G.invert(mod)).rem(mod), mod, dom) | |
def div(f, g): | |
return f.exquo(g), f.zero(f._mod, f.dom) | |
def quo(f, g): | |
return f.exquo(g) | |
def rem(f, g): | |
F, G, mod, dom = f.unify_ANP(g) | |
s, h = F.half_gcdex(G) | |
if h.is_one: | |
return f.zero(mod, dom) | |
else: | |
raise NotInvertible("zero divisor") | |
def LC(f): | |
"""Returns the leading coefficient of ``f``. """ | |
return f._rep.LC() | |
def TC(f): | |
"""Returns the trailing coefficient of ``f``. """ | |
return f._rep.TC() | |
def is_zero(f): | |
"""Returns ``True`` if ``f`` is a zero algebraic number. """ | |
return f._rep.is_zero | |
def is_one(f): | |
"""Returns ``True`` if ``f`` is a unit algebraic number. """ | |
return f._rep.is_one | |
def is_ground(f): | |
"""Returns ``True`` if ``f`` is an element of the ground domain. """ | |
return f._rep.is_ground | |
def __pos__(f): | |
return f | |
def __neg__(f): | |
return f.neg() | |
def __add__(f, g): | |
if isinstance(g, ANP): | |
return f.add(g) | |
try: | |
g = f.dom.convert(g) | |
except CoercionFailed: | |
return NotImplemented | |
else: | |
return f.add_ground(g) | |
def __radd__(f, g): | |
return f.__add__(g) | |
def __sub__(f, g): | |
if isinstance(g, ANP): | |
return f.sub(g) | |
try: | |
g = f.dom.convert(g) | |
except CoercionFailed: | |
return NotImplemented | |
else: | |
return f.sub_ground(g) | |
def __rsub__(f, g): | |
return (-f).__add__(g) | |
def __mul__(f, g): | |
if isinstance(g, ANP): | |
return f.mul(g) | |
try: | |
g = f.dom.convert(g) | |
except CoercionFailed: | |
return NotImplemented | |
else: | |
return f.mul_ground(g) | |
def __rmul__(f, g): | |
return f.__mul__(g) | |
def __pow__(f, n): | |
return f.pow(n) | |
def __divmod__(f, g): | |
return f.div(g) | |
def __mod__(f, g): | |
return f.rem(g) | |
def __truediv__(f, g): | |
if isinstance(g, ANP): | |
return f.quo(g) | |
try: | |
g = f.dom.convert(g) | |
except CoercionFailed: | |
return NotImplemented | |
else: | |
return f.quo_ground(g) | |
def __eq__(f, g): | |
try: | |
F, G, _, _ = f.unify_ANP(g) | |
except UnificationFailed: | |
return NotImplemented | |
return F == G | |
def __ne__(f, g): | |
try: | |
F, G, _, _ = f.unify_ANP(g) | |
except UnificationFailed: | |
return NotImplemented | |
return F != G | |
def __lt__(f, g): | |
F, G, _, _ = f.unify_ANP(g) | |
return F < G | |
def __le__(f, g): | |
F, G, _, _ = f.unify_ANP(g) | |
return F <= G | |
def __gt__(f, g): | |
F, G, _, _ = f.unify_ANP(g) | |
return F > G | |
def __ge__(f, g): | |
F, G, _, _ = f.unify_ANP(g) | |
return F >= G | |
def __bool__(f): | |
return bool(f._rep) | |