Kano001's picture
Upload 3077 files
6a86ad5 verified
raw
history blame
94.1 kB
"""OO layer for several polynomial representations. """
from __future__ import annotations
from sympy.external.gmpy import GROUND_TYPES
from sympy.utilities.exceptions import sympy_deprecation_warning
from sympy.core.numbers import oo
from sympy.core.sympify import CantSympify
from sympy.polys.polyutils import PicklableWithSlots, _sort_factors
from sympy.polys.domains import Domain, ZZ, QQ
from sympy.polys.polyerrors import (
CoercionFailed,
ExactQuotientFailed,
DomainError,
NotInvertible,
)
from sympy.polys.densebasic import (
ninf,
dmp_validate,
dup_normal, dmp_normal,
dup_convert, dmp_convert,
dmp_from_sympy,
dup_strip,
dmp_degree_in,
dmp_degree_list,
dmp_negative_p,
dmp_ground_LC,
dmp_ground_TC,
dmp_ground_nth,
dmp_one, dmp_ground,
dmp_zero, dmp_zero_p, dmp_one_p, dmp_ground_p,
dup_from_dict, dmp_from_dict,
dmp_to_dict,
dmp_deflate,
dmp_inject, dmp_eject,
dmp_terms_gcd,
dmp_list_terms, dmp_exclude,
dup_slice, dmp_slice_in, dmp_permute,
dmp_to_tuple,)
from sympy.polys.densearith import (
dmp_add_ground,
dmp_sub_ground,
dmp_mul_ground,
dmp_quo_ground,
dmp_exquo_ground,
dmp_abs,
dmp_neg,
dmp_add,
dmp_sub,
dmp_mul,
dmp_sqr,
dmp_pow,
dmp_pdiv,
dmp_prem,
dmp_pquo,
dmp_pexquo,
dmp_div,
dmp_rem,
dmp_quo,
dmp_exquo,
dmp_add_mul, dmp_sub_mul,
dmp_max_norm,
dmp_l1_norm,
dmp_l2_norm_squared)
from sympy.polys.densetools import (
dmp_clear_denoms,
dmp_integrate_in,
dmp_diff_in,
dmp_eval_in,
dup_revert,
dmp_ground_trunc,
dmp_ground_content,
dmp_ground_primitive,
dmp_ground_monic,
dmp_compose,
dup_decompose,
dup_shift,
dmp_shift,
dup_transform,
dmp_lift)
from sympy.polys.euclidtools import (
dup_half_gcdex, dup_gcdex, dup_invert,
dmp_subresultants,
dmp_resultant,
dmp_discriminant,
dmp_inner_gcd,
dmp_gcd,
dmp_lcm,
dmp_cancel)
from sympy.polys.sqfreetools import (
dup_gff_list,
dmp_norm,
dmp_sqf_p,
dmp_sqf_norm,
dmp_sqf_part,
dmp_sqf_list, dmp_sqf_list_include)
from sympy.polys.factortools import (
dup_cyclotomic_p, dmp_irreducible_p,
dmp_factor_list, dmp_factor_list_include)
from sympy.polys.rootisolation import (
dup_isolate_real_roots_sqf,
dup_isolate_real_roots,
dup_isolate_all_roots_sqf,
dup_isolate_all_roots,
dup_refine_real_root,
dup_count_real_roots,
dup_count_complex_roots,
dup_sturm,
dup_cauchy_upper_bound,
dup_cauchy_lower_bound,
dup_mignotte_sep_bound_squared)
from sympy.polys.polyerrors import (
UnificationFailed,
PolynomialError)
_flint_domains: tuple[Domain, ...]
if GROUND_TYPES == 'flint':
import flint
_flint_domains = (ZZ, QQ)
else:
flint = None
_flint_domains = ()
class DMP(CantSympify):
"""Dense Multivariate Polynomials over `K`. """
__slots__ = ()
def __new__(cls, rep, dom, lev=None):
if lev is None:
rep, lev = dmp_validate(rep)
elif not isinstance(rep, list):
raise CoercionFailed("expected list, got %s" % type(rep))
return cls.new(rep, dom, lev)
@classmethod
def new(cls, rep, dom, lev):
# It would be too slow to call _validate_args always at runtime.
# Ideally this checking would be handled by a static type checker.
#
#cls._validate_args(rep, dom, lev)
if flint is not None:
if lev == 0 and dom in _flint_domains:
return DUP_Flint._new(rep, dom, lev)
return DMP_Python._new(rep, dom, lev)
@property
def rep(f):
"""Get the representation of ``f``. """
sympy_deprecation_warning("""
Accessing the ``DMP.rep`` attribute is deprecated. The internal
representation of ``DMP`` instances can now be ``DUP_Flint`` when the
ground types are ``flint``. In this case the ``DMP`` instance does not
have a ``rep`` attribute. Use ``DMP.to_list()`` instead. Using
``DMP.to_list()`` also works in previous versions of SymPy.
""",
deprecated_since_version="1.13",
active_deprecations_target="dmp-rep",
)
return f.to_list()
def to_best(f):
"""Convert to DUP_Flint if possible.
This method should be used when the domain or level is changed and it
potentially becomes possible to convert from DMP_Python to DUP_Flint.
"""
if flint is not None:
if isinstance(f, DMP_Python) and f.lev == 0 and f.dom in _flint_domains:
return DUP_Flint.new(f._rep, f.dom, f.lev)
return f
@classmethod
def _validate_args(cls, rep, dom, lev):
assert isinstance(dom, Domain)
assert isinstance(lev, int) and lev >= 0
def validate_rep(rep, lev):
assert isinstance(rep, list)
if lev == 0:
assert all(dom.of_type(c) for c in rep)
else:
for r in rep:
validate_rep(r, lev - 1)
validate_rep(rep, lev)
@classmethod
def from_dict(cls, rep, lev, dom):
rep = dmp_from_dict(rep, lev, dom)
return cls.new(rep, dom, lev)
@classmethod
def from_list(cls, rep, lev, dom):
"""Create an instance of ``cls`` given a list of native coefficients. """
return cls.new(dmp_convert(rep, lev, None, dom), dom, lev)
@classmethod
def from_sympy_list(cls, rep, lev, dom):
"""Create an instance of ``cls`` given a list of SymPy coefficients. """
return cls.new(dmp_from_sympy(rep, lev, dom), dom, lev)
@classmethod
def from_monoms_coeffs(cls, monoms, coeffs, lev, dom):
return cls(dict(list(zip(monoms, coeffs))), dom, lev)
def convert(f, dom):
"""Convert ``f`` to a ``DMP`` over the new domain. """
if f.dom == dom:
return f
elif f.lev or flint is None:
return f._convert(dom)
elif isinstance(f, DUP_Flint):
if dom in _flint_domains:
return f._convert(dom)
else:
return f.to_DMP_Python()._convert(dom)
elif isinstance(f, DMP_Python):
if dom in _flint_domains:
return f._convert(dom).to_DUP_Flint()
else:
return f._convert(dom)
else:
raise RuntimeError("unreachable code")
def _convert(f, dom):
raise NotImplementedError
@classmethod
def zero(cls, lev, dom):
return DMP(dmp_zero(lev), dom, lev)
@classmethod
def one(cls, lev, dom):
return DMP(dmp_one(lev, dom), dom, lev)
def _one(f):
raise NotImplementedError
def __repr__(f):
return "%s(%s, %s)" % (f.__class__.__name__, f.to_list(), f.dom)
def __hash__(f):
return hash((f.__class__.__name__, f.to_tuple(), f.lev, f.dom))
def __getnewargs__(self):
return self.to_list(), self.dom, self.lev
def ground_new(f, coeff):
"""Construct a new ground instance of ``f``. """
raise NotImplementedError
def unify_DMP(f, g):
"""Unify and return ``DMP`` instances of ``f`` and ``g``. """
if not isinstance(g, DMP) or f.lev != g.lev:
raise UnificationFailed("Cannot unify %s with %s" % (f, g))
if f.dom != g.dom:
dom = f.dom.unify(g.dom)
f = f.convert(dom)
g = g.convert(dom)
return f, g
def to_dict(f, zero=False):
"""Convert ``f`` to a dict representation with native coefficients. """
return dmp_to_dict(f.to_list(), f.lev, f.dom, zero=zero)
def to_sympy_dict(f, zero=False):
"""Convert ``f`` to a dict representation with SymPy coefficients. """
rep = f.to_dict(zero=zero)
for k, v in rep.items():
rep[k] = f.dom.to_sympy(v)
return rep
def to_sympy_list(f):
"""Convert ``f`` to a list representation with SymPy coefficients. """
def sympify_nested_list(rep):
out = []
for val in rep:
if isinstance(val, list):
out.append(sympify_nested_list(val))
else:
out.append(f.dom.to_sympy(val))
return out
return sympify_nested_list(f.to_list())
def to_list(f):
"""Convert ``f`` to a list representation with native coefficients. """
raise NotImplementedError
def to_tuple(f):
"""
Convert ``f`` to a tuple representation with native coefficients.
This is needed for hashing.
"""
raise NotImplementedError
def to_ring(f):
"""Make the ground domain a ring. """
return f.convert(f.dom.get_ring())
def to_field(f):
"""Make the ground domain a field. """
return f.convert(f.dom.get_field())
def to_exact(f):
"""Make the ground domain exact. """
return f.convert(f.dom.get_exact())
def slice(f, m, n, j=0):
"""Take a continuous subsequence of terms of ``f``. """
if not f.lev and not j:
return f._slice(m, n)
else:
return f._slice_lev(m, n, j)
def _slice(f, m, n):
raise NotImplementedError
def _slice_lev(f, m, n, j):
raise NotImplementedError
def coeffs(f, order=None):
"""Returns all non-zero coefficients from ``f`` in lex order. """
return [ c for _, c in f.terms(order=order) ]
def monoms(f, order=None):
"""Returns all non-zero monomials from ``f`` in lex order. """
return [ m for m, _ in f.terms(order=order) ]
def terms(f, order=None):
"""Returns all non-zero terms from ``f`` in lex order. """
if f.is_zero:
zero_monom = (0,)*(f.lev + 1)
return [(zero_monom, f.dom.zero)]
else:
return f._terms(order=order)
def _terms(f, order=None):
raise NotImplementedError
def all_coeffs(f):
"""Returns all coefficients from ``f``. """
if f.lev:
raise PolynomialError('multivariate polynomials not supported')
if not f:
return [f.dom.zero]
else:
return list(f.to_list())
def all_monoms(f):
"""Returns all monomials from ``f``. """
if f.lev:
raise PolynomialError('multivariate polynomials not supported')
n = f.degree()
if n < 0:
return [(0,)]
else:
return [ (n - i,) for i, c in enumerate(f.to_list()) ]
def all_terms(f):
"""Returns all terms from a ``f``. """
if f.lev:
raise PolynomialError('multivariate polynomials not supported')
n = f.degree()
if n < 0:
return [((0,), f.dom.zero)]
else:
return [ ((n - i,), c) for i, c in enumerate(f.to_list()) ]
def lift(f):
"""Convert algebraic coefficients to rationals. """
return f._lift().to_best()
def _lift(f):
raise NotImplementedError
def deflate(f):
"""Reduce degree of `f` by mapping `x_i^m` to `y_i`. """
raise NotImplementedError
def inject(f, front=False):
"""Inject ground domain generators into ``f``. """
raise NotImplementedError
def eject(f, dom, front=False):
"""Eject selected generators into the ground domain. """
raise NotImplementedError
def exclude(f):
r"""
Remove useless generators from ``f``.
Returns the removed generators and the new excluded ``f``.
Examples
========
>>> from sympy.polys.polyclasses import DMP
>>> from sympy.polys.domains import ZZ
>>> DMP([[[ZZ(1)]], [[ZZ(1)], [ZZ(2)]]], ZZ).exclude()
([2], DMP_Python([[1], [1, 2]], ZZ))
"""
J, F = f._exclude()
return J, F.to_best()
def _exclude(f):
raise NotImplementedError
def permute(f, P):
r"""
Returns a polynomial in `K[x_{P(1)}, ..., x_{P(n)}]`.
Examples
========
>>> from sympy.polys.polyclasses import DMP
>>> from sympy.polys.domains import ZZ
>>> DMP([[[ZZ(2)], [ZZ(1), ZZ(0)]], [[]]], ZZ).permute([1, 0, 2])
DMP_Python([[[2], []], [[1, 0], []]], ZZ)
>>> DMP([[[ZZ(2)], [ZZ(1), ZZ(0)]], [[]]], ZZ).permute([1, 2, 0])
DMP_Python([[[1], []], [[2, 0], []]], ZZ)
"""
return f._permute(P)
def _permute(f, P):
raise NotImplementedError
def terms_gcd(f):
"""Remove GCD of terms from the polynomial ``f``. """
raise NotImplementedError
def abs(f):
"""Make all coefficients in ``f`` positive. """
raise NotImplementedError
def neg(f):
"""Negate all coefficients in ``f``. """
raise NotImplementedError
def add_ground(f, c):
"""Add an element of the ground domain to ``f``. """
return f._add_ground(f.dom.convert(c))
def sub_ground(f, c):
"""Subtract an element of the ground domain from ``f``. """
return f._sub_ground(f.dom.convert(c))
def mul_ground(f, c):
"""Multiply ``f`` by a an element of the ground domain. """
return f._mul_ground(f.dom.convert(c))
def quo_ground(f, c):
"""Quotient of ``f`` by a an element of the ground domain. """
return f._quo_ground(f.dom.convert(c))
def exquo_ground(f, c):
"""Exact quotient of ``f`` by a an element of the ground domain. """
return f._exquo_ground(f.dom.convert(c))
def add(f, g):
"""Add two multivariate polynomials ``f`` and ``g``. """
F, G = f.unify_DMP(g)
return F._add(G)
def sub(f, g):
"""Subtract two multivariate polynomials ``f`` and ``g``. """
F, G = f.unify_DMP(g)
return F._sub(G)
def mul(f, g):
"""Multiply two multivariate polynomials ``f`` and ``g``. """
F, G = f.unify_DMP(g)
return F._mul(G)
def sqr(f):
"""Square a multivariate polynomial ``f``. """
return f._sqr()
def pow(f, n):
"""Raise ``f`` to a non-negative power ``n``. """
if not isinstance(n, int):
raise TypeError("``int`` expected, got %s" % type(n))
return f._pow(n)
def pdiv(f, g):
"""Polynomial pseudo-division of ``f`` and ``g``. """
F, G = f.unify_DMP(g)
return F._pdiv(G)
def prem(f, g):
"""Polynomial pseudo-remainder of ``f`` and ``g``. """
F, G = f.unify_DMP(g)
return F._prem(G)
def pquo(f, g):
"""Polynomial pseudo-quotient of ``f`` and ``g``. """
F, G = f.unify_DMP(g)
return F._pquo(G)
def pexquo(f, g):
"""Polynomial exact pseudo-quotient of ``f`` and ``g``. """
F, G = f.unify_DMP(g)
return F._pexquo(G)
def div(f, g):
"""Polynomial division with remainder of ``f`` and ``g``. """
F, G = f.unify_DMP(g)
return F._div(G)
def rem(f, g):
"""Computes polynomial remainder of ``f`` and ``g``. """
F, G = f.unify_DMP(g)
return F._rem(G)
def quo(f, g):
"""Computes polynomial quotient of ``f`` and ``g``. """
F, G = f.unify_DMP(g)
return F._quo(G)
def exquo(f, g):
"""Computes polynomial exact quotient of ``f`` and ``g``. """
F, G = f.unify_DMP(g)
return F._exquo(G)
def _add_ground(f, c):
raise NotImplementedError
def _sub_ground(f, c):
raise NotImplementedError
def _mul_ground(f, c):
raise NotImplementedError
def _quo_ground(f, c):
raise NotImplementedError
def _exquo_ground(f, c):
raise NotImplementedError
def _add(f, g):
raise NotImplementedError
def _sub(f, g):
raise NotImplementedError
def _mul(f, g):
raise NotImplementedError
def _sqr(f):
raise NotImplementedError
def _pow(f, n):
raise NotImplementedError
def _pdiv(f, g):
raise NotImplementedError
def _prem(f, g):
raise NotImplementedError
def _pquo(f, g):
raise NotImplementedError
def _pexquo(f, g):
raise NotImplementedError
def _div(f, g):
raise NotImplementedError
def _rem(f, g):
raise NotImplementedError
def _quo(f, g):
raise NotImplementedError
def _exquo(f, g):
raise NotImplementedError
def degree(f, j=0):
"""Returns the leading degree of ``f`` in ``x_j``. """
if not isinstance(j, int):
raise TypeError("``int`` expected, got %s" % type(j))
return f._degree(j)
def _degree(f, j):
raise NotImplementedError
def degree_list(f):
"""Returns a list of degrees of ``f``. """
raise NotImplementedError
def total_degree(f):
"""Returns the total degree of ``f``. """
raise NotImplementedError
def homogenize(f, s):
"""Return homogeneous polynomial of ``f``"""
td = f.total_degree()
result = {}
new_symbol = (s == len(f.terms()[0][0]))
for term in f.terms():
d = sum(term[0])
if d < td:
i = td - d
else:
i = 0
if new_symbol:
result[term[0] + (i,)] = term[1]
else:
l = list(term[0])
l[s] += i
result[tuple(l)] = term[1]
return DMP.from_dict(result, f.lev + int(new_symbol), f.dom)
def homogeneous_order(f):
"""Returns the homogeneous order of ``f``. """
if f.is_zero:
return -oo
monoms = f.monoms()
tdeg = sum(monoms[0])
for monom in monoms:
_tdeg = sum(monom)
if _tdeg != tdeg:
return None
return tdeg
def LC(f):
"""Returns the leading coefficient of ``f``. """
raise NotImplementedError
def TC(f):
"""Returns the trailing coefficient of ``f``. """
raise NotImplementedError
def nth(f, *N):
"""Returns the ``n``-th coefficient of ``f``. """
if all(isinstance(n, int) for n in N):
return f._nth(N)
else:
raise TypeError("a sequence of integers expected")
def _nth(f, N):
raise NotImplementedError
def max_norm(f):
"""Returns maximum norm of ``f``. """
raise NotImplementedError
def l1_norm(f):
"""Returns l1 norm of ``f``. """
raise NotImplementedError
def l2_norm_squared(f):
"""Return squared l2 norm of ``f``. """
raise NotImplementedError
def clear_denoms(f):
"""Clear denominators, but keep the ground domain. """
raise NotImplementedError
def integrate(f, m=1, j=0):
"""Computes the ``m``-th order indefinite integral of ``f`` in ``x_j``. """
if not isinstance(m, int):
raise TypeError("``int`` expected, got %s" % type(m))
if not isinstance(j, int):
raise TypeError("``int`` expected, got %s" % type(j))
return f._integrate(m, j)
def _integrate(f, m, j):
raise NotImplementedError
def diff(f, m=1, j=0):
"""Computes the ``m``-th order derivative of ``f`` in ``x_j``. """
if not isinstance(m, int):
raise TypeError("``int`` expected, got %s" % type(m))
if not isinstance(j, int):
raise TypeError("``int`` expected, got %s" % type(j))
return f._diff(m, j)
def _diff(f, m, j):
raise NotImplementedError
def eval(f, a, j=0):
"""Evaluates ``f`` at the given point ``a`` in ``x_j``. """
if not isinstance(j, int):
raise TypeError("``int`` expected, got %s" % type(j))
elif not (0 <= j <= f.lev):
raise ValueError("invalid variable index %s" % j)
if f.lev:
return f._eval_lev(a, j)
else:
return f._eval(a)
def _eval(f, a):
raise NotImplementedError
def _eval_lev(f, a, j):
raise NotImplementedError
def half_gcdex(f, g):
"""Half extended Euclidean algorithm, if univariate. """
F, G = f.unify_DMP(g)
if F.lev:
raise ValueError('univariate polynomial expected')
return F._half_gcdex(G)
def _half_gcdex(f, g):
raise NotImplementedError
def gcdex(f, g):
"""Extended Euclidean algorithm, if univariate. """
F, G = f.unify_DMP(g)
if F.lev:
raise ValueError('univariate polynomial expected')
if not F.dom.is_Field:
raise DomainError('ground domain must be a field')
return F._gcdex(G)
def _gcdex(f, g):
raise NotImplementedError
def invert(f, g):
"""Invert ``f`` modulo ``g``, if possible. """
F, G = f.unify_DMP(g)
if F.lev:
raise ValueError('univariate polynomial expected')
return F._invert(G)
def _invert(f, g):
raise NotImplementedError
def revert(f, n):
"""Compute ``f**(-1)`` mod ``x**n``. """
if f.lev:
raise ValueError('univariate polynomial expected')
return f._revert(n)
def _revert(f, n):
raise NotImplementedError
def subresultants(f, g):
"""Computes subresultant PRS sequence of ``f`` and ``g``. """
F, G = f.unify_DMP(g)
return F._subresultants(G)
def _subresultants(f, g):
raise NotImplementedError
def resultant(f, g, includePRS=False):
"""Computes resultant of ``f`` and ``g`` via PRS. """
F, G = f.unify_DMP(g)
if includePRS:
return F._resultant_includePRS(G)
else:
return F._resultant(G)
def _resultant(f, g, includePRS=False):
raise NotImplementedError
def discriminant(f):
"""Computes discriminant of ``f``. """
raise NotImplementedError
def cofactors(f, g):
"""Returns GCD of ``f`` and ``g`` and their cofactors. """
F, G = f.unify_DMP(g)
return F._cofactors(G)
def _cofactors(f, g):
raise NotImplementedError
def gcd(f, g):
"""Returns polynomial GCD of ``f`` and ``g``. """
F, G = f.unify_DMP(g)
return F._gcd(G)
def _gcd(f, g):
raise NotImplementedError
def lcm(f, g):
"""Returns polynomial LCM of ``f`` and ``g``. """
F, G = f.unify_DMP(g)
return F._lcm(G)
def _lcm(f, g):
raise NotImplementedError
def cancel(f, g, include=True):
"""Cancel common factors in a rational function ``f/g``. """
F, G = f.unify_DMP(g)
if include:
return F._cancel_include(G)
else:
return F._cancel(G)
def _cancel(f, g):
raise NotImplementedError
def _cancel_include(f, g):
raise NotImplementedError
def trunc(f, p):
"""Reduce ``f`` modulo a constant ``p``. """
return f._trunc(f.dom.convert(p))
def _trunc(f, p):
raise NotImplementedError
def monic(f):
"""Divides all coefficients by ``LC(f)``. """
raise NotImplementedError
def content(f):
"""Returns GCD of polynomial coefficients. """
raise NotImplementedError
def primitive(f):
"""Returns content and a primitive form of ``f``. """
raise NotImplementedError
def compose(f, g):
"""Computes functional composition of ``f`` and ``g``. """
F, G = f.unify_DMP(g)
return F._compose(G)
def _compose(f, g):
raise NotImplementedError
def decompose(f):
"""Computes functional decomposition of ``f``. """
if f.lev:
raise ValueError('univariate polynomial expected')
return f._decompose()
def _decompose(f):
raise NotImplementedError
def shift(f, a):
"""Efficiently compute Taylor shift ``f(x + a)``. """
if f.lev:
raise ValueError('univariate polynomial expected')
return f._shift(f.dom.convert(a))
def shift_list(f, a):
"""Efficiently compute Taylor shift ``f(X + A)``. """
a = [f.dom.convert(ai) for ai in a]
return f._shift_list(a)
def _shift(f, a):
raise NotImplementedError
def transform(f, p, q):
"""Evaluate functional transformation ``q**n * f(p/q)``."""
if f.lev:
raise ValueError('univariate polynomial expected')
P, Q = p.unify_DMP(q)
F, P = f.unify_DMP(P)
F, Q = F.unify_DMP(Q)
return F._transform(P, Q)
def _transform(f, p, q):
raise NotImplementedError
def sturm(f):
"""Computes the Sturm sequence of ``f``. """
if f.lev:
raise ValueError('univariate polynomial expected')
return f._sturm()
def _sturm(f):
raise NotImplementedError
def cauchy_upper_bound(f):
"""Computes the Cauchy upper bound on the roots of ``f``. """
if f.lev:
raise ValueError('univariate polynomial expected')
return f._cauchy_upper_bound()
def _cauchy_upper_bound(f):
raise NotImplementedError
def cauchy_lower_bound(f):
"""Computes the Cauchy lower bound on the nonzero roots of ``f``. """
if f.lev:
raise ValueError('univariate polynomial expected')
return f._cauchy_lower_bound()
def _cauchy_lower_bound(f):
raise NotImplementedError
def mignotte_sep_bound_squared(f):
"""Computes the squared Mignotte bound on root separations of ``f``. """
if f.lev:
raise ValueError('univariate polynomial expected')
return f._mignotte_sep_bound_squared()
def _mignotte_sep_bound_squared(f):
raise NotImplementedError
def gff_list(f):
"""Computes greatest factorial factorization of ``f``. """
if f.lev:
raise ValueError('univariate polynomial expected')
return f._gff_list()
def _gff_list(f):
raise NotImplementedError
def norm(f):
"""Computes ``Norm(f)``."""
raise NotImplementedError
def sqf_norm(f):
"""Computes square-free norm of ``f``. """
raise NotImplementedError
def sqf_part(f):
"""Computes square-free part of ``f``. """
raise NotImplementedError
def sqf_list(f, all=False):
"""Returns a list of square-free factors of ``f``. """
raise NotImplementedError
def sqf_list_include(f, all=False):
"""Returns a list of square-free factors of ``f``. """
raise NotImplementedError
def factor_list(f):
"""Returns a list of irreducible factors of ``f``. """
raise NotImplementedError
def factor_list_include(f):
"""Returns a list of irreducible factors of ``f``. """
raise NotImplementedError
def intervals(f, all=False, eps=None, inf=None, sup=None, fast=False, sqf=False):
"""Compute isolating intervals for roots of ``f``. """
if f.lev:
raise PolynomialError("Cannot isolate roots of a multivariate polynomial")
if all and sqf:
return f._isolate_all_roots_sqf(eps=eps, inf=inf, sup=sup, fast=fast)
elif all and not sqf:
return f._isolate_all_roots(eps=eps, inf=inf, sup=sup, fast=fast)
elif not all and sqf:
return f._isolate_real_roots_sqf(eps=eps, inf=inf, sup=sup, fast=fast)
else:
return f._isolate_real_roots(eps=eps, inf=inf, sup=sup, fast=fast)
def _isolate_all_roots(f, eps, inf, sup, fast):
raise NotImplementedError
def _isolate_all_roots_sqf(f, eps, inf, sup, fast):
raise NotImplementedError
def _isolate_real_roots(f, eps, inf, sup, fast):
raise NotImplementedError
def _isolate_real_roots_sqf(f, eps, inf, sup, fast):
raise NotImplementedError
def refine_root(f, s, t, eps=None, steps=None, fast=False):
"""
Refine an isolating interval to the given precision.
``eps`` should be a rational number.
"""
if f.lev:
raise PolynomialError(
"Cannot refine a root of a multivariate polynomial")
return f._refine_real_root(s, t, eps=eps, steps=steps, fast=fast)
def _refine_real_root(f, s, t, eps, steps, fast):
raise NotImplementedError
def count_real_roots(f, inf=None, sup=None):
"""Return the number of real roots of ``f`` in ``[inf, sup]``. """
raise NotImplementedError
def count_complex_roots(f, inf=None, sup=None):
"""Return the number of complex roots of ``f`` in ``[inf, sup]``. """
raise NotImplementedError
@property
def is_zero(f):
"""Returns ``True`` if ``f`` is a zero polynomial. """
raise NotImplementedError
@property
def is_one(f):
"""Returns ``True`` if ``f`` is a unit polynomial. """
raise NotImplementedError
@property
def is_ground(f):
"""Returns ``True`` if ``f`` is an element of the ground domain. """
raise NotImplementedError
@property
def is_sqf(f):
"""Returns ``True`` if ``f`` is a square-free polynomial. """
raise NotImplementedError
@property
def is_monic(f):
"""Returns ``True`` if the leading coefficient of ``f`` is one. """
raise NotImplementedError
@property
def is_primitive(f):
"""Returns ``True`` if the GCD of the coefficients of ``f`` is one. """
raise NotImplementedError
@property
def is_linear(f):
"""Returns ``True`` if ``f`` is linear in all its variables. """
raise NotImplementedError
@property
def is_quadratic(f):
"""Returns ``True`` if ``f`` is quadratic in all its variables. """
raise NotImplementedError
@property
def is_monomial(f):
"""Returns ``True`` if ``f`` is zero or has only one term. """
raise NotImplementedError
@property
def is_homogeneous(f):
"""Returns ``True`` if ``f`` is a homogeneous polynomial. """
raise NotImplementedError
@property
def is_irreducible(f):
"""Returns ``True`` if ``f`` has no factors over its domain. """
raise NotImplementedError
@property
def is_cyclotomic(f):
"""Returns ``True`` if ``f`` is a cyclotomic polynomial. """
raise NotImplementedError
def __abs__(f):
return f.abs()
def __neg__(f):
return f.neg()
def __add__(f, g):
if isinstance(g, DMP):
return f.add(g)
else:
try:
return f.add_ground(g)
except CoercionFailed:
return NotImplemented
def __radd__(f, g):
return f.__add__(g)
def __sub__(f, g):
if isinstance(g, DMP):
return f.sub(g)
else:
try:
return f.sub_ground(g)
except CoercionFailed:
return NotImplemented
def __rsub__(f, g):
return (-f).__add__(g)
def __mul__(f, g):
if isinstance(g, DMP):
return f.mul(g)
else:
try:
return f.mul_ground(g)
except CoercionFailed:
return NotImplemented
def __rmul__(f, g):
return f.__mul__(g)
def __truediv__(f, g):
if isinstance(g, DMP):
return f.exquo(g)
else:
try:
return f.mul_ground(g)
except CoercionFailed:
return NotImplemented
def __rtruediv__(f, g):
if isinstance(g, DMP):
return g.exquo(f)
else:
try:
return f._one().mul_ground(g).exquo(f)
except CoercionFailed:
return NotImplemented
def __pow__(f, n):
return f.pow(n)
def __divmod__(f, g):
return f.div(g)
def __mod__(f, g):
return f.rem(g)
def __floordiv__(f, g):
if isinstance(g, DMP):
return f.quo(g)
else:
try:
return f.quo_ground(g)
except TypeError:
return NotImplemented
def __eq__(f, g):
if f is g:
return True
if not isinstance(g, DMP):
return NotImplemented
try:
F, G = f.unify_DMP(g)
except UnificationFailed:
return False
else:
return F._strict_eq(G)
def _strict_eq(f, g):
raise NotImplementedError
def eq(f, g, strict=False):
if not strict:
return f == g
else:
return f._strict_eq(g)
def ne(f, g, strict=False):
return not f.eq(g, strict=strict)
def __lt__(f, g):
F, G = f.unify_DMP(g)
return F.to_list() < G.to_list()
def __le__(f, g):
F, G = f.unify_DMP(g)
return F.to_list() <= G.to_list()
def __gt__(f, g):
F, G = f.unify_DMP(g)
return F.to_list() > G.to_list()
def __ge__(f, g):
F, G = f.unify_DMP(g)
return F.to_list() >= G.to_list()
def __bool__(f):
return not f.is_zero
class DMP_Python(DMP):
"""Dense Multivariate Polynomials over `K`. """
__slots__ = ('_rep', 'dom', 'lev')
@classmethod
def _new(cls, rep, dom, lev):
obj = object.__new__(cls)
obj._rep = rep
obj.lev = lev
obj.dom = dom
return obj
def _strict_eq(f, g):
if type(f) != type(g):
return False
return f.lev == g.lev and f.dom == g.dom and f._rep == g._rep
def per(f, rep):
"""Create a DMP out of the given representation. """
return f._new(rep, f.dom, f.lev)
def ground_new(f, coeff):
"""Construct a new ground instance of ``f``. """
return f._new(dmp_ground(coeff, f.lev), f.dom, f.lev)
def _one(f):
return f.one(f.lev, f.dom)
def unify(f, g):
"""Unify representations of two multivariate polynomials. """
# XXX: This function is not really used any more since there is
# unify_DMP now.
if not isinstance(g, DMP) or f.lev != g.lev:
raise UnificationFailed("Cannot unify %s with %s" % (f, g))
if f.dom == g.dom:
return f.lev, f.dom, f.per, f._rep, g._rep
else:
lev, dom = f.lev, f.dom.unify(g.dom)
F = dmp_convert(f._rep, lev, f.dom, dom)
G = dmp_convert(g._rep, lev, g.dom, dom)
def per(rep):
return f._new(rep, dom, lev)
return lev, dom, per, F, G
def to_DUP_Flint(f):
"""Convert ``f`` to a Flint representation. """
return DUP_Flint._new(f._rep, f.dom, f.lev)
def to_list(f):
"""Convert ``f`` to a list representation with native coefficients. """
return list(f._rep)
def to_tuple(f):
"""Convert ``f`` to a tuple representation with native coefficients. """
return dmp_to_tuple(f._rep, f.lev)
def _convert(f, dom):
"""Convert the ground domain of ``f``. """
return f._new(dmp_convert(f._rep, f.lev, f.dom, dom), dom, f.lev)
def _slice(f, m, n):
"""Take a continuous subsequence of terms of ``f``. """
rep = dup_slice(f._rep, m, n, f.dom)
return f._new(rep, f.dom, f.lev)
def _slice_lev(f, m, n, j):
"""Take a continuous subsequence of terms of ``f``. """
rep = dmp_slice_in(f._rep, m, n, j, f.lev, f.dom)
return f._new(rep, f.dom, f.lev)
def _terms(f, order=None):
"""Returns all non-zero terms from ``f`` in lex order. """
return dmp_list_terms(f._rep, f.lev, f.dom, order=order)
def _lift(f):
"""Convert algebraic coefficients to rationals. """
r = dmp_lift(f._rep, f.lev, f.dom)
return f._new(r, f.dom.dom, f.lev)
def deflate(f):
"""Reduce degree of `f` by mapping `x_i^m` to `y_i`. """
J, F = dmp_deflate(f._rep, f.lev, f.dom)
return J, f.per(F)
def inject(f, front=False):
"""Inject ground domain generators into ``f``. """
F, lev = dmp_inject(f._rep, f.lev, f.dom, front=front)
# XXX: domain and level changed here
return f._new(F, f.dom.dom, lev)
def eject(f, dom, front=False):
"""Eject selected generators into the ground domain. """
F = dmp_eject(f._rep, f.lev, dom, front=front)
# XXX: domain and level changed here
return f._new(F, dom, f.lev - len(dom.symbols))
def _exclude(f):
"""Remove useless generators from ``f``. """
J, F, u = dmp_exclude(f._rep, f.lev, f.dom)
# XXX: level changed here
return J, f._new(F, f.dom, u)
def _permute(f, P):
"""Returns a polynomial in `K[x_{P(1)}, ..., x_{P(n)}]`. """
return f.per(dmp_permute(f._rep, P, f.lev, f.dom))
def terms_gcd(f):
"""Remove GCD of terms from the polynomial ``f``. """
J, F = dmp_terms_gcd(f._rep, f.lev, f.dom)
return J, f.per(F)
def _add_ground(f, c):
"""Add an element of the ground domain to ``f``. """
return f.per(dmp_add_ground(f._rep, c, f.lev, f.dom))
def _sub_ground(f, c):
"""Subtract an element of the ground domain from ``f``. """
return f.per(dmp_sub_ground(f._rep, c, f.lev, f.dom))
def _mul_ground(f, c):
"""Multiply ``f`` by a an element of the ground domain. """
return f.per(dmp_mul_ground(f._rep, c, f.lev, f.dom))
def _quo_ground(f, c):
"""Quotient of ``f`` by a an element of the ground domain. """
return f.per(dmp_quo_ground(f._rep, c, f.lev, f.dom))
def _exquo_ground(f, c):
"""Exact quotient of ``f`` by a an element of the ground domain. """
return f.per(dmp_exquo_ground(f._rep, c, f.lev, f.dom))
def abs(f):
"""Make all coefficients in ``f`` positive. """
return f.per(dmp_abs(f._rep, f.lev, f.dom))
def neg(f):
"""Negate all coefficients in ``f``. """
return f.per(dmp_neg(f._rep, f.lev, f.dom))
def _add(f, g):
"""Add two multivariate polynomials ``f`` and ``g``. """
return f.per(dmp_add(f._rep, g._rep, f.lev, f.dom))
def _sub(f, g):
"""Subtract two multivariate polynomials ``f`` and ``g``. """
return f.per(dmp_sub(f._rep, g._rep, f.lev, f.dom))
def _mul(f, g):
"""Multiply two multivariate polynomials ``f`` and ``g``. """
return f.per(dmp_mul(f._rep, g._rep, f.lev, f.dom))
def sqr(f):
"""Square a multivariate polynomial ``f``. """
return f.per(dmp_sqr(f._rep, f.lev, f.dom))
def _pow(f, n):
"""Raise ``f`` to a non-negative power ``n``. """
return f.per(dmp_pow(f._rep, n, f.lev, f.dom))
def _pdiv(f, g):
"""Polynomial pseudo-division of ``f`` and ``g``. """
q, r = dmp_pdiv(f._rep, g._rep, f.lev, f.dom)
return f.per(q), f.per(r)
def _prem(f, g):
"""Polynomial pseudo-remainder of ``f`` and ``g``. """
return f.per(dmp_prem(f._rep, g._rep, f.lev, f.dom))
def _pquo(f, g):
"""Polynomial pseudo-quotient of ``f`` and ``g``. """
return f.per(dmp_pquo(f._rep, g._rep, f.lev, f.dom))
def _pexquo(f, g):
"""Polynomial exact pseudo-quotient of ``f`` and ``g``. """
return f.per(dmp_pexquo(f._rep, g._rep, f.lev, f.dom))
def _div(f, g):
"""Polynomial division with remainder of ``f`` and ``g``. """
q, r = dmp_div(f._rep, g._rep, f.lev, f.dom)
return f.per(q), f.per(r)
def _rem(f, g):
"""Computes polynomial remainder of ``f`` and ``g``. """
return f.per(dmp_rem(f._rep, g._rep, f.lev, f.dom))
def _quo(f, g):
"""Computes polynomial quotient of ``f`` and ``g``. """
return f.per(dmp_quo(f._rep, g._rep, f.lev, f.dom))
def _exquo(f, g):
"""Computes polynomial exact quotient of ``f`` and ``g``. """
return f.per(dmp_exquo(f._rep, g._rep, f.lev, f.dom))
def _degree(f, j=0):
"""Returns the leading degree of ``f`` in ``x_j``. """
return dmp_degree_in(f._rep, j, f.lev)
def degree_list(f):
"""Returns a list of degrees of ``f``. """
return dmp_degree_list(f._rep, f.lev)
def total_degree(f):
"""Returns the total degree of ``f``. """
return max(sum(m) for m in f.monoms())
def LC(f):
"""Returns the leading coefficient of ``f``. """
return dmp_ground_LC(f._rep, f.lev, f.dom)
def TC(f):
"""Returns the trailing coefficient of ``f``. """
return dmp_ground_TC(f._rep, f.lev, f.dom)
def _nth(f, N):
"""Returns the ``n``-th coefficient of ``f``. """
return dmp_ground_nth(f._rep, N, f.lev, f.dom)
def max_norm(f):
"""Returns maximum norm of ``f``. """
return dmp_max_norm(f._rep, f.lev, f.dom)
def l1_norm(f):
"""Returns l1 norm of ``f``. """
return dmp_l1_norm(f._rep, f.lev, f.dom)
def l2_norm_squared(f):
"""Return squared l2 norm of ``f``. """
return dmp_l2_norm_squared(f._rep, f.lev, f.dom)
def clear_denoms(f):
"""Clear denominators, but keep the ground domain. """
coeff, F = dmp_clear_denoms(f._rep, f.lev, f.dom)
return coeff, f.per(F)
def _integrate(f, m=1, j=0):
"""Computes the ``m``-th order indefinite integral of ``f`` in ``x_j``. """
return f.per(dmp_integrate_in(f._rep, m, j, f.lev, f.dom))
def _diff(f, m=1, j=0):
"""Computes the ``m``-th order derivative of ``f`` in ``x_j``. """
return f.per(dmp_diff_in(f._rep, m, j, f.lev, f.dom))
def _eval(f, a):
return dmp_eval_in(f._rep, f.dom.convert(a), 0, f.lev, f.dom)
def _eval_lev(f, a, j):
rep = dmp_eval_in(f._rep, f.dom.convert(a), j, f.lev, f.dom)
return f.new(rep, f.dom, f.lev - 1)
def _half_gcdex(f, g):
"""Half extended Euclidean algorithm, if univariate. """
s, h = dup_half_gcdex(f._rep, g._rep, f.dom)
return f.per(s), f.per(h)
def _gcdex(f, g):
"""Extended Euclidean algorithm, if univariate. """
s, t, h = dup_gcdex(f._rep, g._rep, f.dom)
return f.per(s), f.per(t), f.per(h)
def _invert(f, g):
"""Invert ``f`` modulo ``g``, if possible. """
s = dup_invert(f._rep, g._rep, f.dom)
return f.per(s)
def _revert(f, n):
"""Compute ``f**(-1)`` mod ``x**n``. """
return f.per(dup_revert(f._rep, n, f.dom))
def _subresultants(f, g):
"""Computes subresultant PRS sequence of ``f`` and ``g``. """
R = dmp_subresultants(f._rep, g._rep, f.lev, f.dom)
return list(map(f.per, R))
def _resultant_includePRS(f, g):
"""Computes resultant of ``f`` and ``g`` via PRS. """
res, R = dmp_resultant(f._rep, g._rep, f.lev, f.dom, includePRS=True)
if f.lev:
res = f.new(res, f.dom, f.lev - 1)
return res, list(map(f.per, R))
def _resultant(f, g):
res = dmp_resultant(f._rep, g._rep, f.lev, f.dom)
if f.lev:
res = f.new(res, f.dom, f.lev - 1)
return res
def discriminant(f):
"""Computes discriminant of ``f``. """
res = dmp_discriminant(f._rep, f.lev, f.dom)
if f.lev:
res = f.new(res, f.dom, f.lev - 1)
return res
def _cofactors(f, g):
"""Returns GCD of ``f`` and ``g`` and their cofactors. """
h, cff, cfg = dmp_inner_gcd(f._rep, g._rep, f.lev, f.dom)
return f.per(h), f.per(cff), f.per(cfg)
def _gcd(f, g):
"""Returns polynomial GCD of ``f`` and ``g``. """
return f.per(dmp_gcd(f._rep, g._rep, f.lev, f.dom))
def _lcm(f, g):
"""Returns polynomial LCM of ``f`` and ``g``. """
return f.per(dmp_lcm(f._rep, g._rep, f.lev, f.dom))
def _cancel(f, g):
"""Cancel common factors in a rational function ``f/g``. """
cF, cG, F, G = dmp_cancel(f._rep, g._rep, f.lev, f.dom, include=False)
return cF, cG, f.per(F), f.per(G)
def _cancel_include(f, g):
"""Cancel common factors in a rational function ``f/g``. """
F, G = dmp_cancel(f._rep, g._rep, f.lev, f.dom, include=True)
return f.per(F), f.per(G)
def _trunc(f, p):
"""Reduce ``f`` modulo a constant ``p``. """
return f.per(dmp_ground_trunc(f._rep, p, f.lev, f.dom))
def monic(f):
"""Divides all coefficients by ``LC(f)``. """
return f.per(dmp_ground_monic(f._rep, f.lev, f.dom))
def content(f):
"""Returns GCD of polynomial coefficients. """
return dmp_ground_content(f._rep, f.lev, f.dom)
def primitive(f):
"""Returns content and a primitive form of ``f``. """
cont, F = dmp_ground_primitive(f._rep, f.lev, f.dom)
return cont, f.per(F)
def _compose(f, g):
"""Computes functional composition of ``f`` and ``g``. """
return f.per(dmp_compose(f._rep, g._rep, f.lev, f.dom))
def _decompose(f):
"""Computes functional decomposition of ``f``. """
return list(map(f.per, dup_decompose(f._rep, f.dom)))
def _shift(f, a):
"""Efficiently compute Taylor shift ``f(x + a)``. """
return f.per(dup_shift(f._rep, a, f.dom))
def _shift_list(f, a):
"""Efficiently compute Taylor shift ``f(X + A)``. """
return f.per(dmp_shift(f._rep, a, f.lev, f.dom))
def _transform(f, p, q):
"""Evaluate functional transformation ``q**n * f(p/q)``."""
return f.per(dup_transform(f._rep, p._rep, q._rep, f.dom))
def _sturm(f):
"""Computes the Sturm sequence of ``f``. """
return list(map(f.per, dup_sturm(f._rep, f.dom)))
def _cauchy_upper_bound(f):
"""Computes the Cauchy upper bound on the roots of ``f``. """
return dup_cauchy_upper_bound(f._rep, f.dom)
def _cauchy_lower_bound(f):
"""Computes the Cauchy lower bound on the nonzero roots of ``f``. """
return dup_cauchy_lower_bound(f._rep, f.dom)
def _mignotte_sep_bound_squared(f):
"""Computes the squared Mignotte bound on root separations of ``f``. """
return dup_mignotte_sep_bound_squared(f._rep, f.dom)
def _gff_list(f):
"""Computes greatest factorial factorization of ``f``. """
return [ (f.per(g), k) for g, k in dup_gff_list(f._rep, f.dom) ]
def norm(f):
"""Computes ``Norm(f)``."""
r = dmp_norm(f._rep, f.lev, f.dom)
return f.new(r, f.dom.dom, f.lev)
def sqf_norm(f):
"""Computes square-free norm of ``f``. """
s, g, r = dmp_sqf_norm(f._rep, f.lev, f.dom)
return s, f.per(g), f.new(r, f.dom.dom, f.lev)
def sqf_part(f):
"""Computes square-free part of ``f``. """
return f.per(dmp_sqf_part(f._rep, f.lev, f.dom))
def sqf_list(f, all=False):
"""Returns a list of square-free factors of ``f``. """
coeff, factors = dmp_sqf_list(f._rep, f.lev, f.dom, all)
return coeff, [ (f.per(g), k) for g, k in factors ]
def sqf_list_include(f, all=False):
"""Returns a list of square-free factors of ``f``. """
factors = dmp_sqf_list_include(f._rep, f.lev, f.dom, all)
return [ (f.per(g), k) for g, k in factors ]
def factor_list(f):
"""Returns a list of irreducible factors of ``f``. """
coeff, factors = dmp_factor_list(f._rep, f.lev, f.dom)
return coeff, [ (f.per(g), k) for g, k in factors ]
def factor_list_include(f):
"""Returns a list of irreducible factors of ``f``. """
factors = dmp_factor_list_include(f._rep, f.lev, f.dom)
return [ (f.per(g), k) for g, k in factors ]
def _isolate_real_roots(f, eps, inf, sup, fast):
return dup_isolate_real_roots(f._rep, f.dom, eps=eps, inf=inf, sup=sup, fast=fast)
def _isolate_real_roots_sqf(f, eps, inf, sup, fast):
return dup_isolate_real_roots_sqf(f._rep, f.dom, eps=eps, inf=inf, sup=sup, fast=fast)
def _isolate_all_roots(f, eps, inf, sup, fast):
return dup_isolate_all_roots(f._rep, f.dom, eps=eps, inf=inf, sup=sup, fast=fast)
def _isolate_all_roots_sqf(f, eps, inf, sup, fast):
return dup_isolate_all_roots_sqf(f._rep, f.dom, eps=eps, inf=inf, sup=sup, fast=fast)
def _refine_real_root(f, s, t, eps, steps, fast):
return dup_refine_real_root(f._rep, s, t, f.dom, eps=eps, steps=steps, fast=fast)
def count_real_roots(f, inf=None, sup=None):
"""Return the number of real roots of ``f`` in ``[inf, sup]``. """
return dup_count_real_roots(f._rep, f.dom, inf=inf, sup=sup)
def count_complex_roots(f, inf=None, sup=None):
"""Return the number of complex roots of ``f`` in ``[inf, sup]``. """
return dup_count_complex_roots(f._rep, f.dom, inf=inf, sup=sup)
@property
def is_zero(f):
"""Returns ``True`` if ``f`` is a zero polynomial. """
return dmp_zero_p(f._rep, f.lev)
@property
def is_one(f):
"""Returns ``True`` if ``f`` is a unit polynomial. """
return dmp_one_p(f._rep, f.lev, f.dom)
@property
def is_ground(f):
"""Returns ``True`` if ``f`` is an element of the ground domain. """
return dmp_ground_p(f._rep, None, f.lev)
@property
def is_sqf(f):
"""Returns ``True`` if ``f`` is a square-free polynomial. """
return dmp_sqf_p(f._rep, f.lev, f.dom)
@property
def is_monic(f):
"""Returns ``True`` if the leading coefficient of ``f`` is one. """
return f.dom.is_one(dmp_ground_LC(f._rep, f.lev, f.dom))
@property
def is_primitive(f):
"""Returns ``True`` if the GCD of the coefficients of ``f`` is one. """
return f.dom.is_one(dmp_ground_content(f._rep, f.lev, f.dom))
@property
def is_linear(f):
"""Returns ``True`` if ``f`` is linear in all its variables. """
return all(sum(monom) <= 1 for monom in dmp_to_dict(f._rep, f.lev, f.dom).keys())
@property
def is_quadratic(f):
"""Returns ``True`` if ``f`` is quadratic in all its variables. """
return all(sum(monom) <= 2 for monom in dmp_to_dict(f._rep, f.lev, f.dom).keys())
@property
def is_monomial(f):
"""Returns ``True`` if ``f`` is zero or has only one term. """
return len(f.to_dict()) <= 1
@property
def is_homogeneous(f):
"""Returns ``True`` if ``f`` is a homogeneous polynomial. """
return f.homogeneous_order() is not None
@property
def is_irreducible(f):
"""Returns ``True`` if ``f`` has no factors over its domain. """
return dmp_irreducible_p(f._rep, f.lev, f.dom)
@property
def is_cyclotomic(f):
"""Returns ``True`` if ``f`` is a cyclotomic polynomial. """
if not f.lev:
return dup_cyclotomic_p(f._rep, f.dom)
else:
return False
class DUP_Flint(DMP):
"""Dense Multivariate Polynomials over `K`. """
lev = 0
__slots__ = ('_rep', 'dom', '_cls')
def __reduce__(self):
return self.__class__, (self.to_list(), self.dom, self.lev)
@classmethod
def _new(cls, rep, dom, lev):
rep = cls._flint_poly(rep[::-1], dom, lev)
return cls.from_rep(rep, dom)
def to_list(f):
"""Convert ``f`` to a list representation with native coefficients. """
return f._rep.coeffs()[::-1]
@classmethod
def _flint_poly(cls, rep, dom, lev):
assert dom in _flint_domains
assert lev == 0
flint_cls = cls._get_flint_poly_cls(dom)
return flint_cls(rep)
@classmethod
def _get_flint_poly_cls(cls, dom):
if dom.is_ZZ:
return flint.fmpz_poly
elif dom.is_QQ:
return flint.fmpq_poly
else:
raise RuntimeError("Domain %s is not supported with flint" % dom)
@classmethod
def from_rep(cls, rep, dom):
"""Create a DMP from the given representation. """
if dom.is_ZZ:
assert isinstance(rep, flint.fmpz_poly)
_cls = flint.fmpz_poly
elif dom.is_QQ:
assert isinstance(rep, flint.fmpq_poly)
_cls = flint.fmpq_poly
else:
raise RuntimeError("Domain %s is not supported with flint" % dom)
obj = object.__new__(cls)
obj.dom = dom
obj._rep = rep
obj._cls = _cls
return obj
def _strict_eq(f, g):
if type(f) != type(g):
return False
return f.dom == g.dom and f._rep == g._rep
def ground_new(f, coeff):
"""Construct a new ground instance of ``f``. """
return f.from_rep(f._cls([coeff]), f.dom)
def _one(f):
return f.ground_new(f.dom.one)
def unify(f, g):
"""Unify representations of two polynomials. """
raise RuntimeError
def to_DMP_Python(f):
"""Convert ``f`` to a Python native representation. """
return DMP_Python._new(f.to_list(), f.dom, f.lev)
def to_tuple(f):
"""Convert ``f`` to a tuple representation with native coefficients. """
return tuple(f.to_list())
def _convert(f, dom):
"""Convert the ground domain of ``f``. """
if dom == QQ and f.dom == ZZ:
return f.from_rep(flint.fmpq_poly(f._rep), dom)
elif dom == ZZ and f.dom == QQ:
# XXX: python-flint should provide a faster way to do this.
return f.to_DMP_Python()._convert(dom).to_DUP_Flint()
else:
raise RuntimeError(f"DUP_Flint: Cannot convert {f.dom} to {dom}")
def _slice(f, m, n):
"""Take a continuous subsequence of terms of ``f``. """
coeffs = f._rep.coeffs()[m:n]
return f.from_rep(f._cls(coeffs), f.dom)
def _slice_lev(f, m, n, j):
"""Take a continuous subsequence of terms of ``f``. """
# Only makes sense for multivariate polynomials
raise NotImplementedError
def _terms(f, order=None):
"""Returns all non-zero terms from ``f`` in lex order. """
if order is None or order.alias == 'lex':
terms = [ ((n,), c) for n, c in enumerate(f._rep.coeffs()) if c ]
return terms[::-1]
else:
# XXX: InverseOrder (ilex) comes here. We could handle that case
# efficiently by reversing the coefficients but it is not clear
# how to test if the order is InverseOrder.
#
# Otherwise why would the order ever be different for univariate
# polynomials?
return f.to_DMP_Python()._terms(order=order)
def _lift(f):
"""Convert algebraic coefficients to rationals. """
# This is for algebraic number fields which DUP_Flint does not support
raise NotImplementedError
def deflate(f):
"""Reduce degree of `f` by mapping `x_i^m` to `y_i`. """
# XXX: Check because otherwise this segfaults with python-flint:
#
# >>> flint.fmpz_poly([]).deflation()
# Exception (fmpz_poly_deflate). Division by zero.
# Aborted (core dumped
#
if f.is_zero:
return (1,), f
g, n = f._rep.deflation()
return (n,), f.from_rep(g, f.dom)
def inject(f, front=False):
"""Inject ground domain generators into ``f``. """
# Ground domain would need to be a poly ring
raise NotImplementedError
def eject(f, dom, front=False):
"""Eject selected generators into the ground domain. """
# Only makes sense for multivariate polynomials
raise NotImplementedError
def _exclude(f):
"""Remove useless generators from ``f``. """
# Only makes sense for multivariate polynomials
raise NotImplementedError
def _permute(f, P):
"""Returns a polynomial in `K[x_{P(1)}, ..., x_{P(n)}]`. """
# Only makes sense for multivariate polynomials
raise NotImplementedError
def terms_gcd(f):
"""Remove GCD of terms from the polynomial ``f``. """
# XXX: python-flint should have primitive, content, etc methods.
J, F = f.to_DMP_Python().terms_gcd()
return J, F.to_DUP_Flint()
def _add_ground(f, c):
"""Add an element of the ground domain to ``f``. """
return f.from_rep(f._rep + c, f.dom)
def _sub_ground(f, c):
"""Subtract an element of the ground domain from ``f``. """
return f.from_rep(f._rep - c, f.dom)
def _mul_ground(f, c):
"""Multiply ``f`` by a an element of the ground domain. """
return f.from_rep(f._rep * c, f.dom)
def _quo_ground(f, c):
"""Quotient of ``f`` by a an element of the ground domain. """
return f.from_rep(f._rep // c, f.dom)
def _exquo_ground(f, c):
"""Exact quotient of ``f`` by a an element of the ground domain. """
q, r = divmod(f._rep, c)
if r:
raise ExactQuotientFailed(f, c)
return f.from_rep(q, f.dom)
def abs(f):
"""Make all coefficients in ``f`` positive. """
return f.to_DMP_Python().abs().to_DUP_Flint()
def neg(f):
"""Negate all coefficients in ``f``. """
return f.from_rep(-f._rep, f.dom)
def _add(f, g):
"""Add two multivariate polynomials ``f`` and ``g``. """
return f.from_rep(f._rep + g._rep, f.dom)
def _sub(f, g):
"""Subtract two multivariate polynomials ``f`` and ``g``. """
return f.from_rep(f._rep - g._rep, f.dom)
def _mul(f, g):
"""Multiply two multivariate polynomials ``f`` and ``g``. """
return f.from_rep(f._rep * g._rep, f.dom)
def sqr(f):
"""Square a multivariate polynomial ``f``. """
return f.from_rep(f._rep ** 2, f.dom)
def _pow(f, n):
"""Raise ``f`` to a non-negative power ``n``. """
return f.from_rep(f._rep ** n, f.dom)
def _pdiv(f, g):
"""Polynomial pseudo-division of ``f`` and ``g``. """
d = f.degree() - g.degree() + 1
q, r = divmod(g.LC()**d * f._rep, g._rep)
return f.from_rep(q, f.dom), f.from_rep(r, f.dom)
def _prem(f, g):
"""Polynomial pseudo-remainder of ``f`` and ``g``. """
d = f.degree() - g.degree() + 1
q = (g.LC()**d * f._rep) % g._rep
return f.from_rep(q, f.dom)
def _pquo(f, g):
"""Polynomial pseudo-quotient of ``f`` and ``g``. """
d = f.degree() - g.degree() + 1
r = (g.LC()**d * f._rep) // g._rep
return f.from_rep(r, f.dom)
def _pexquo(f, g):
"""Polynomial exact pseudo-quotient of ``f`` and ``g``. """
d = f.degree() - g.degree() + 1
q, r = divmod(g.LC()**d * f._rep, g._rep)
if r:
raise ExactQuotientFailed(f, g)
return f.from_rep(q, f.dom)
def _div(f, g):
"""Polynomial division with remainder of ``f`` and ``g``. """
if f.dom.is_Field:
q, r = divmod(f._rep, g._rep)
return f.from_rep(q, f.dom), f.from_rep(r, f.dom)
else:
# XXX: python-flint defines division in ZZ[x] differently
q, r = f.to_DMP_Python()._div(g.to_DMP_Python())
return q.to_DUP_Flint(), r.to_DUP_Flint()
def _rem(f, g):
"""Computes polynomial remainder of ``f`` and ``g``. """
return f.from_rep(f._rep % g._rep, f.dom)
def _quo(f, g):
"""Computes polynomial quotient of ``f`` and ``g``. """
return f.from_rep(f._rep // g._rep, f.dom)
def _exquo(f, g):
"""Computes polynomial exact quotient of ``f`` and ``g``. """
q, r = f._div(g)
if r:
raise ExactQuotientFailed(f, g)
return q
def _degree(f, j=0):
"""Returns the leading degree of ``f`` in ``x_j``. """
d = f._rep.degree()
if d == -1:
d = ninf
return d
def degree_list(f):
"""Returns a list of degrees of ``f``. """
return ( f._degree() ,)
def total_degree(f):
"""Returns the total degree of ``f``. """
return f._degree()
def LC(f):
"""Returns the leading coefficient of ``f``. """
return f._rep[f._rep.degree()]
def TC(f):
"""Returns the trailing coefficient of ``f``. """
return f._rep[0]
def _nth(f, N):
"""Returns the ``n``-th coefficient of ``f``. """
[n] = N
return f._rep[n]
def max_norm(f):
"""Returns maximum norm of ``f``. """
return f.to_DMP_Python().max_norm()
def l1_norm(f):
"""Returns l1 norm of ``f``. """
return f.to_DMP_Python().l1_norm()
def l2_norm_squared(f):
"""Return squared l2 norm of ``f``. """
return f.to_DMP_Python().l2_norm_squared()
def clear_denoms(f):
"""Clear denominators, but keep the ground domain. """
denom = f._rep.denom()
numer = f.from_rep(f._cls(f._rep.numer()), f.dom)
return denom, numer
def _integrate(f, m=1, j=0):
"""Computes the ``m``-th order indefinite integral of ``f`` in ``x_j``. """
assert j == 0
if f.dom.is_QQ:
rep = f._rep
for i in range(m):
rep = rep.integral()
return f.from_rep(rep, f.dom)
else:
return f.to_DMP_Python()._integrate(m=m, j=j).to_DUP_Flint()
def _diff(f, m=1, j=0):
"""Computes the ``m``-th order derivative of ``f``. """
assert j == 0
rep = f._rep
for i in range(m):
rep = rep.derivative()
return f.from_rep(rep, f.dom)
def _eval(f, a):
return f.to_DMP_Python()._eval(a)
def _eval_lev(f, a, j):
# Only makes sense for multivariate polynomials
raise NotImplementedError
def _half_gcdex(f, g):
"""Half extended Euclidean algorithm. """
s, h = f.to_DMP_Python()._half_gcdex(g.to_DMP_Python())
return s.to_DUP_Flint(), h.to_DUP_Flint()
def _gcdex(f, g):
"""Extended Euclidean algorithm. """
h, s, t = f._rep.xgcd(g._rep)
return f.from_rep(s, f.dom), f.from_rep(t, f.dom), f.from_rep(h, f.dom)
def _invert(f, g):
"""Invert ``f`` modulo ``g``, if possible. """
if f.dom.is_QQ:
gcd, F_inv, _ = f._rep.xgcd(g._rep)
if gcd != 1:
raise NotInvertible("zero divisor")
return f.from_rep(F_inv, f.dom)
else:
return f.to_DMP_Python()._invert(g.to_DMP_Python()).to_DUP_Flint()
def _revert(f, n):
"""Compute ``f**(-1)`` mod ``x**n``. """
return f.to_DMP_Python()._revert(n).to_DUP_Flint()
def _subresultants(f, g):
"""Computes subresultant PRS sequence of ``f`` and ``g``. """
R = f.to_DMP_Python()._subresultants(g.to_DMP_Python())
return [ g.to_DUP_Flint() for g in R ]
def _resultant_includePRS(f, g):
"""Computes resultant of ``f`` and ``g`` via PRS. """
res, R = f.to_DMP_Python()._resultant_includePRS(g.to_DMP_Python())
return res, [ g.to_DUP_Flint() for g in R ]
def _resultant(f, g):
"""Computes resultant of ``f`` and ``g``. """
return f.to_DMP_Python()._resultant(g.to_DMP_Python())
def discriminant(f):
"""Computes discriminant of ``f``. """
return f.to_DMP_Python().discriminant()
def _cofactors(f, g):
"""Returns GCD of ``f`` and ``g`` and their cofactors. """
h = f.gcd(g)
return h, f.exquo(h), g.exquo(h)
def _gcd(f, g):
"""Returns polynomial GCD of ``f`` and ``g``. """
return f.from_rep(f._rep.gcd(g._rep), f.dom)
def _lcm(f, g):
"""Returns polynomial LCM of ``f`` and ``g``. """
# XXX: python-flint should have a lcm method
if not (f and g):
return f.ground_new(f.dom.zero)
l = f._mul(g)._exquo(f._gcd(g))
if l.dom.is_Field:
l = l.monic()
elif l.LC() < 0:
l = l.neg()
return l
def _cancel(f, g):
"""Cancel common factors in a rational function ``f/g``. """
# Think carefully about how to handle denominators and coefficient
# canonicalisation if more domains are permitted...
assert f.dom == g.dom in (ZZ, QQ)
if f.dom.is_QQ:
cG, F = f.clear_denoms()
cF, G = g.clear_denoms()
else:
cG, F = f.dom.one, f
cF, G = g.dom.one, g
cH = cF.gcd(cG)
cF, cG = cF // cH, cG // cH
H = F._gcd(G)
F, G = F.exquo(H), G.exquo(H)
f_neg = F.LC() < 0
g_neg = G.LC() < 0
if f_neg and g_neg:
F, G = F.neg(), G.neg()
elif f_neg:
cF, F = -cF, F.neg()
elif g_neg:
cF, G = -cF, G.neg()
return cF, cG, F, G
def _cancel_include(f, g):
"""Cancel common factors in a rational function ``f/g``. """
cF, cG, F, G = f._cancel(g)
return F._mul_ground(cF), G._mul_ground(cG)
def _trunc(f, p):
"""Reduce ``f`` modulo a constant ``p``. """
return f.to_DMP_Python()._trunc(p).to_DUP_Flint()
def monic(f):
"""Divides all coefficients by ``LC(f)``. """
return f._exquo_ground(f.LC())
def content(f):
"""Returns GCD of polynomial coefficients. """
# XXX: python-flint should have a content method
return f.to_DMP_Python().content()
def primitive(f):
"""Returns content and a primitive form of ``f``. """
cont = f.content()
prim = f._exquo_ground(cont)
return cont, prim
def _compose(f, g):
"""Computes functional composition of ``f`` and ``g``. """
return f.from_rep(f._rep(g._rep), f.dom)
def _decompose(f):
"""Computes functional decomposition of ``f``. """
return [ g.to_DUP_Flint() for g in f.to_DMP_Python()._decompose() ]
def _shift(f, a):
"""Efficiently compute Taylor shift ``f(x + a)``. """
x_plus_a = f._cls([a, f.dom.one])
return f.from_rep(f._rep(x_plus_a), f.dom)
def _transform(f, p, q):
"""Evaluate functional transformation ``q**n * f(p/q)``."""
F, P, Q = f.to_DMP_Python(), p.to_DMP_Python(), q.to_DMP_Python()
return F.transform(P, Q).to_DUP_Flint()
def _sturm(f):
"""Computes the Sturm sequence of ``f``. """
return [ g.to_DUP_Flint() for g in f.to_DMP_Python()._sturm() ]
def _cauchy_upper_bound(f):
"""Computes the Cauchy upper bound on the roots of ``f``. """
return f.to_DMP_Python()._cauchy_upper_bound()
def _cauchy_lower_bound(f):
"""Computes the Cauchy lower bound on the nonzero roots of ``f``. """
return f.to_DMP_Python()._cauchy_lower_bound()
def _mignotte_sep_bound_squared(f):
"""Computes the squared Mignotte bound on root separations of ``f``. """
return f.to_DMP_Python()._mignotte_sep_bound_squared()
def _gff_list(f):
"""Computes greatest factorial factorization of ``f``. """
F = f.to_DMP_Python()
return [ (g.to_DUP_Flint(), k) for g, k in F.gff_list() ]
def norm(f):
"""Computes ``Norm(f)``."""
# This is for algebraic number fields which DUP_Flint does not support
raise NotImplementedError
def sqf_norm(f):
"""Computes square-free norm of ``f``. """
# This is for algebraic number fields which DUP_Flint does not support
raise NotImplementedError
def sqf_part(f):
"""Computes square-free part of ``f``. """
return f._exquo(f._gcd(f._diff()))
def sqf_list(f, all=False):
"""Returns a list of square-free factors of ``f``. """
coeff, factors = f.to_DMP_Python().sqf_list(all=all)
return coeff, [ (g.to_DUP_Flint(), k) for g, k in factors ]
def sqf_list_include(f, all=False):
"""Returns a list of square-free factors of ``f``. """
factors = f.to_DMP_Python().sqf_list_include(all=all)
return [ (g.to_DUP_Flint(), k) for g, k in factors ]
def factor_list(f):
"""Returns a list of irreducible factors of ``f``. """
if f.dom.is_ZZ:
# python-flint matches polys here
coeff, factors = f._rep.factor()
factors = [ (f.from_rep(g, f.dom), k) for g, k in factors ]
elif f.dom.is_QQ:
# python-flint returns monic factors over QQ whereas polys returns
# denominator free factors.
coeff, factors = f._rep.factor()
factors_monic = [ (f.from_rep(g, f.dom), k) for g, k in factors ]
# Absorb the denominators into coeff
factors = []
for g, k in factors_monic:
d, g = g.clear_denoms()
coeff /= d**k
factors.append((g, k))
else:
# Check carefully when adding more domains here...
raise RuntimeError("Domain %s is not supported with flint" % f.dom)
# We need to match the way that polys orders the factors
factors = f._sort_factors(factors)
return coeff, factors
def factor_list_include(f):
"""Returns a list of irreducible factors of ``f``. """
# XXX: factor_list_include seems to be broken in general:
#
# >>> Poly(2*(x - 1)**3, x).factor_list_include()
# [(Poly(2*x - 2, x, domain='ZZ'), 3)]
#
# Let's not try to implement it here.
factors = f.to_DMP_Python().factor_list_include()
return [ (g.to_DUP_Flint(), k) for g, k in factors ]
def _sort_factors(f, factors):
"""Sort a list of factors to canonical order. """
# Convert the factors to lists and use _sort_factors from polys
factors = [ (g.to_list(), k) for g, k in factors ]
factors = _sort_factors(factors, multiple=True)
to_dup_flint = lambda g: f.from_rep(f._cls(g[::-1]), f.dom)
return [ (to_dup_flint(g), k) for g, k in factors ]
def _isolate_real_roots(f, eps, inf, sup, fast):
return f.to_DMP_Python()._isolate_real_roots(eps, inf, sup, fast)
def _isolate_real_roots_sqf(f, eps, inf, sup, fast):
return f.to_DMP_Python()._isolate_real_roots_sqf(eps, inf, sup, fast)
def _isolate_all_roots(f, eps, inf, sup, fast):
return f.to_DMP_Python()._isolate_all_roots(eps, inf, sup, fast)
def _isolate_all_roots_sqf(f, eps, inf, sup, fast):
return f.to_DMP_Python()._isolate_all_roots_sqf(eps, inf, sup, fast)
def _refine_real_root(f, s, t, eps, steps, fast):
return f.to_DMP_Python()._refine_real_root(s, t, eps, steps, fast)
def count_real_roots(f, inf=None, sup=None):
"""Return the number of real roots of ``f`` in ``[inf, sup]``. """
return f.to_DMP_Python().count_real_roots(inf=inf, sup=sup)
def count_complex_roots(f, inf=None, sup=None):
"""Return the number of complex roots of ``f`` in ``[inf, sup]``. """
return f.to_DMP_Python().count_complex_roots(inf=inf, sup=sup)
@property
def is_zero(f):
"""Returns ``True`` if ``f`` is a zero polynomial. """
return not f._rep
@property
def is_one(f):
"""Returns ``True`` if ``f`` is a unit polynomial. """
return f._rep == f.dom.one
@property
def is_ground(f):
"""Returns ``True`` if ``f`` is an element of the ground domain. """
return f._rep.degree() <= 0
@property
def is_linear(f):
"""Returns ``True`` if ``f`` is linear in all its variables. """
return f._rep.degree() <= 1
@property
def is_quadratic(f):
"""Returns ``True`` if ``f`` is quadratic in all its variables. """
return f._rep.degree() <= 2
@property
def is_monomial(f):
"""Returns ``True`` if ``f`` is zero or has only one term. """
return f.to_DMP_Python().is_monomial
@property
def is_monic(f):
"""Returns ``True`` if the leading coefficient of ``f`` is one. """
return f.LC() == f.dom.one
@property
def is_primitive(f):
"""Returns ``True`` if the GCD of the coefficients of ``f`` is one. """
return f.to_DMP_Python().is_primitive
@property
def is_homogeneous(f):
"""Returns ``True`` if ``f`` is a homogeneous polynomial. """
return f.to_DMP_Python().is_homogeneous
@property
def is_sqf(f):
"""Returns ``True`` if ``f`` is a square-free polynomial. """
return f.to_DMP_Python().is_sqf
@property
def is_irreducible(f):
"""Returns ``True`` if ``f`` has no factors over its domain. """
return f.to_DMP_Python().is_irreducible
@property
def is_cyclotomic(f):
"""Returns ``True`` if ``f`` is a cyclotomic polynomial. """
if f.dom.is_ZZ:
return bool(f._rep.is_cyclotomic())
else:
return f.to_DMP_Python().is_cyclotomic
def init_normal_DMF(num, den, lev, dom):
return DMF(dmp_normal(num, lev, dom),
dmp_normal(den, lev, dom), dom, lev)
class DMF(PicklableWithSlots, CantSympify):
"""Dense Multivariate Fractions over `K`. """
__slots__ = ('num', 'den', 'lev', 'dom')
def __init__(self, rep, dom, lev=None):
num, den, lev = self._parse(rep, dom, lev)
num, den = dmp_cancel(num, den, lev, dom)
self.num = num
self.den = den
self.lev = lev
self.dom = dom
@classmethod
def new(cls, rep, dom, lev=None):
num, den, lev = cls._parse(rep, dom, lev)
obj = object.__new__(cls)
obj.num = num
obj.den = den
obj.lev = lev
obj.dom = dom
return obj
def ground_new(self, rep):
return self.new(rep, self.dom, self.lev)
@classmethod
def _parse(cls, rep, dom, lev=None):
if isinstance(rep, tuple):
num, den = rep
if lev is not None:
if isinstance(num, dict):
num = dmp_from_dict(num, lev, dom)
if isinstance(den, dict):
den = dmp_from_dict(den, lev, dom)
else:
num, num_lev = dmp_validate(num)
den, den_lev = dmp_validate(den)
if num_lev == den_lev:
lev = num_lev
else:
raise ValueError('inconsistent number of levels')
if dmp_zero_p(den, lev):
raise ZeroDivisionError('fraction denominator')
if dmp_zero_p(num, lev):
den = dmp_one(lev, dom)
else:
if dmp_negative_p(den, lev, dom):
num = dmp_neg(num, lev, dom)
den = dmp_neg(den, lev, dom)
else:
num = rep
if lev is not None:
if isinstance(num, dict):
num = dmp_from_dict(num, lev, dom)
elif not isinstance(num, list):
num = dmp_ground(dom.convert(num), lev)
else:
num, lev = dmp_validate(num)
den = dmp_one(lev, dom)
return num, den, lev
def __repr__(f):
return "%s((%s, %s), %s)" % (f.__class__.__name__, f.num, f.den, f.dom)
def __hash__(f):
return hash((f.__class__.__name__, dmp_to_tuple(f.num, f.lev),
dmp_to_tuple(f.den, f.lev), f.lev, f.dom))
def poly_unify(f, g):
"""Unify a multivariate fraction and a polynomial. """
if not isinstance(g, DMP) or f.lev != g.lev:
raise UnificationFailed("Cannot unify %s with %s" % (f, g))
if f.dom == g.dom:
return (f.lev, f.dom, f.per, (f.num, f.den), g._rep)
else:
lev, dom = f.lev, f.dom.unify(g.dom)
F = (dmp_convert(f.num, lev, f.dom, dom),
dmp_convert(f.den, lev, f.dom, dom))
G = dmp_convert(g._rep, lev, g.dom, dom)
def per(num, den, cancel=True, kill=False, lev=lev):
if kill:
if not lev:
return num/den
else:
lev = lev - 1
if cancel:
num, den = dmp_cancel(num, den, lev, dom)
return f.__class__.new((num, den), dom, lev)
return lev, dom, per, F, G
def frac_unify(f, g):
"""Unify representations of two multivariate fractions. """
if not isinstance(g, DMF) or f.lev != g.lev:
raise UnificationFailed("Cannot unify %s with %s" % (f, g))
if f.dom == g.dom:
return (f.lev, f.dom, f.per, (f.num, f.den),
(g.num, g.den))
else:
lev, dom = f.lev, f.dom.unify(g.dom)
F = (dmp_convert(f.num, lev, f.dom, dom),
dmp_convert(f.den, lev, f.dom, dom))
G = (dmp_convert(g.num, lev, g.dom, dom),
dmp_convert(g.den, lev, g.dom, dom))
def per(num, den, cancel=True, kill=False, lev=lev):
if kill:
if not lev:
return num/den
else:
lev = lev - 1
if cancel:
num, den = dmp_cancel(num, den, lev, dom)
return f.__class__.new((num, den), dom, lev)
return lev, dom, per, F, G
def per(f, num, den, cancel=True, kill=False):
"""Create a DMF out of the given representation. """
lev, dom = f.lev, f.dom
if kill:
if not lev:
return num/den
else:
lev -= 1
if cancel:
num, den = dmp_cancel(num, den, lev, dom)
return f.__class__.new((num, den), dom, lev)
def half_per(f, rep, kill=False):
"""Create a DMP out of the given representation. """
lev = f.lev
if kill:
if not lev:
return rep
else:
lev -= 1
return DMP(rep, f.dom, lev)
@classmethod
def zero(cls, lev, dom):
return cls.new(0, dom, lev)
@classmethod
def one(cls, lev, dom):
return cls.new(1, dom, lev)
def numer(f):
"""Returns the numerator of ``f``. """
return f.half_per(f.num)
def denom(f):
"""Returns the denominator of ``f``. """
return f.half_per(f.den)
def cancel(f):
"""Remove common factors from ``f.num`` and ``f.den``. """
return f.per(f.num, f.den)
def neg(f):
"""Negate all coefficients in ``f``. """
return f.per(dmp_neg(f.num, f.lev, f.dom), f.den, cancel=False)
def add_ground(f, c):
"""Add an element of the ground domain to ``f``. """
return f + f.ground_new(c)
def add(f, g):
"""Add two multivariate fractions ``f`` and ``g``. """
if isinstance(g, DMP):
lev, dom, per, (F_num, F_den), G = f.poly_unify(g)
num, den = dmp_add_mul(F_num, F_den, G, lev, dom), F_den
else:
lev, dom, per, F, G = f.frac_unify(g)
(F_num, F_den), (G_num, G_den) = F, G
num = dmp_add(dmp_mul(F_num, G_den, lev, dom),
dmp_mul(F_den, G_num, lev, dom), lev, dom)
den = dmp_mul(F_den, G_den, lev, dom)
return per(num, den)
def sub(f, g):
"""Subtract two multivariate fractions ``f`` and ``g``. """
if isinstance(g, DMP):
lev, dom, per, (F_num, F_den), G = f.poly_unify(g)
num, den = dmp_sub_mul(F_num, F_den, G, lev, dom), F_den
else:
lev, dom, per, F, G = f.frac_unify(g)
(F_num, F_den), (G_num, G_den) = F, G
num = dmp_sub(dmp_mul(F_num, G_den, lev, dom),
dmp_mul(F_den, G_num, lev, dom), lev, dom)
den = dmp_mul(F_den, G_den, lev, dom)
return per(num, den)
def mul(f, g):
"""Multiply two multivariate fractions ``f`` and ``g``. """
if isinstance(g, DMP):
lev, dom, per, (F_num, F_den), G = f.poly_unify(g)
num, den = dmp_mul(F_num, G, lev, dom), F_den
else:
lev, dom, per, F, G = f.frac_unify(g)
(F_num, F_den), (G_num, G_den) = F, G
num = dmp_mul(F_num, G_num, lev, dom)
den = dmp_mul(F_den, G_den, lev, dom)
return per(num, den)
def pow(f, n):
"""Raise ``f`` to a non-negative power ``n``. """
if isinstance(n, int):
num, den = f.num, f.den
if n < 0:
num, den, n = den, num, -n
return f.per(dmp_pow(num, n, f.lev, f.dom),
dmp_pow(den, n, f.lev, f.dom), cancel=False)
else:
raise TypeError("``int`` expected, got %s" % type(n))
def quo(f, g):
"""Computes quotient of fractions ``f`` and ``g``. """
if isinstance(g, DMP):
lev, dom, per, (F_num, F_den), G = f.poly_unify(g)
num, den = F_num, dmp_mul(F_den, G, lev, dom)
else:
lev, dom, per, F, G = f.frac_unify(g)
(F_num, F_den), (G_num, G_den) = F, G
num = dmp_mul(F_num, G_den, lev, dom)
den = dmp_mul(F_den, G_num, lev, dom)
return per(num, den)
exquo = quo
def invert(f, check=True):
"""Computes inverse of a fraction ``f``. """
return f.per(f.den, f.num, cancel=False)
@property
def is_zero(f):
"""Returns ``True`` if ``f`` is a zero fraction. """
return dmp_zero_p(f.num, f.lev)
@property
def is_one(f):
"""Returns ``True`` if ``f`` is a unit fraction. """
return dmp_one_p(f.num, f.lev, f.dom) and \
dmp_one_p(f.den, f.lev, f.dom)
def __neg__(f):
return f.neg()
def __add__(f, g):
if isinstance(g, (DMP, DMF)):
return f.add(g)
elif g in f.dom:
return f.add_ground(f.dom.convert(g))
try:
return f.add(f.half_per(g))
except (TypeError, CoercionFailed, NotImplementedError):
return NotImplemented
def __radd__(f, g):
return f.__add__(g)
def __sub__(f, g):
if isinstance(g, (DMP, DMF)):
return f.sub(g)
try:
return f.sub(f.half_per(g))
except (TypeError, CoercionFailed, NotImplementedError):
return NotImplemented
def __rsub__(f, g):
return (-f).__add__(g)
def __mul__(f, g):
if isinstance(g, (DMP, DMF)):
return f.mul(g)
try:
return f.mul(f.half_per(g))
except (TypeError, CoercionFailed, NotImplementedError):
return NotImplemented
def __rmul__(f, g):
return f.__mul__(g)
def __pow__(f, n):
return f.pow(n)
def __truediv__(f, g):
if isinstance(g, (DMP, DMF)):
return f.quo(g)
try:
return f.quo(f.half_per(g))
except (TypeError, CoercionFailed, NotImplementedError):
return NotImplemented
def __rtruediv__(self, g):
return self.invert(check=False)*g
def __eq__(f, g):
try:
if isinstance(g, DMP):
_, _, _, (F_num, F_den), G = f.poly_unify(g)
if f.lev == g.lev:
return dmp_one_p(F_den, f.lev, f.dom) and F_num == G
else:
_, _, _, F, G = f.frac_unify(g)
if f.lev == g.lev:
return F == G
except UnificationFailed:
pass
return False
def __ne__(f, g):
try:
if isinstance(g, DMP):
_, _, _, (F_num, F_den), G = f.poly_unify(g)
if f.lev == g.lev:
return not (dmp_one_p(F_den, f.lev, f.dom) and F_num == G)
else:
_, _, _, F, G = f.frac_unify(g)
if f.lev == g.lev:
return F != G
except UnificationFailed:
pass
return True
def __lt__(f, g):
_, _, _, F, G = f.frac_unify(g)
return F < G
def __le__(f, g):
_, _, _, F, G = f.frac_unify(g)
return F <= G
def __gt__(f, g):
_, _, _, F, G = f.frac_unify(g)
return F > G
def __ge__(f, g):
_, _, _, F, G = f.frac_unify(g)
return F >= G
def __bool__(f):
return not dmp_zero_p(f.num, f.lev)
def init_normal_ANP(rep, mod, dom):
return ANP(dup_normal(rep, dom),
dup_normal(mod, dom), dom)
class ANP(CantSympify):
"""Dense Algebraic Number Polynomials over a field. """
__slots__ = ('_rep', '_mod', 'dom')
def __new__(cls, rep, mod, dom):
if isinstance(rep, DMP):
pass
elif type(rep) is dict: # don't use isinstance
rep = DMP(dup_from_dict(rep, dom), dom, 0)
else:
if isinstance(rep, list):
rep = [dom.convert(a) for a in rep]
else:
rep = [dom.convert(rep)]
rep = DMP(dup_strip(rep), dom, 0)
if isinstance(mod, DMP):
pass
elif isinstance(mod, dict):
mod = DMP(dup_from_dict(mod, dom), dom, 0)
else:
mod = DMP(dup_strip(mod), dom, 0)
return cls.new(rep, mod, dom)
@classmethod
def new(cls, rep, mod, dom):
if not (rep.dom == mod.dom == dom):
raise RuntimeError("Inconsistent domain")
obj = super().__new__(cls)
obj._rep = rep
obj._mod = mod
obj.dom = dom
return obj
# XXX: It should be possible to use __getnewargs__ rather than __reduce__
# but it doesn't work for some reason. Probably this would be easier if
# python-flint supported pickling for polynomial types.
def __reduce__(self):
return ANP, (self.rep, self.mod, self.dom)
@property
def rep(self):
return self._rep.to_list()
@property
def mod(self):
return self.mod_to_list()
def to_DMP(self):
return self._rep
def mod_to_DMP(self):
return self._mod
def per(f, rep):
return f.new(rep, f._mod, f.dom)
def __repr__(f):
return "%s(%s, %s, %s)" % (f.__class__.__name__, f._rep.to_list(), f._mod.to_list(), f.dom)
def __hash__(f):
return hash((f.__class__.__name__, f.to_tuple(), f._mod.to_tuple(), f.dom))
def convert(f, dom):
"""Convert ``f`` to a ``ANP`` over a new domain. """
if f.dom == dom:
return f
else:
return f.new(f._rep.convert(dom), f._mod.convert(dom), dom)
def unify(f, g):
"""Unify representations of two algebraic numbers. """
# XXX: This unify method is not used any more because unify_ANP is used
# instead.
if not isinstance(g, ANP) or f.mod != g.mod:
raise UnificationFailed("Cannot unify %s with %s" % (f, g))
if f.dom == g.dom:
return f.dom, f.per, f.rep, g.rep, f.mod
else:
dom = f.dom.unify(g.dom)
F = dup_convert(f.rep, f.dom, dom)
G = dup_convert(g.rep, g.dom, dom)
if dom != f.dom and dom != g.dom:
mod = dup_convert(f.mod, f.dom, dom)
else:
if dom == f.dom:
mod = f.mod
else:
mod = g.mod
per = lambda rep: ANP(rep, mod, dom)
return dom, per, F, G, mod
def unify_ANP(f, g):
"""Unify and return ``DMP`` instances of ``f`` and ``g``. """
if not isinstance(g, ANP) or f._mod != g._mod:
raise UnificationFailed("Cannot unify %s with %s" % (f, g))
# The domain is almost always QQ but there are some tests involving ZZ
if f.dom != g.dom:
dom = f.dom.unify(g.dom)
f = f.convert(dom)
g = g.convert(dom)
return f._rep, g._rep, f._mod, f.dom
@classmethod
def zero(cls, mod, dom):
return ANP(0, mod, dom)
@classmethod
def one(cls, mod, dom):
return ANP(1, mod, dom)
def to_dict(f):
"""Convert ``f`` to a dict representation with native coefficients. """
return f._rep.to_dict()
def to_sympy_dict(f):
"""Convert ``f`` to a dict representation with SymPy coefficients. """
rep = dmp_to_dict(f.rep, 0, f.dom)
for k, v in rep.items():
rep[k] = f.dom.to_sympy(v)
return rep
def to_list(f):
"""Convert ``f`` to a list representation with native coefficients. """
return f._rep.to_list()
def mod_to_list(f):
"""Return ``f.mod`` as a list with native coefficients. """
return f._mod.to_list()
def to_sympy_list(f):
"""Convert ``f`` to a list representation with SymPy coefficients. """
return [ f.dom.to_sympy(c) for c in f.to_list() ]
def to_tuple(f):
"""
Convert ``f`` to a tuple representation with native coefficients.
This is needed for hashing.
"""
return f._rep.to_tuple()
@classmethod
def from_list(cls, rep, mod, dom):
return ANP(dup_strip(list(map(dom.convert, rep))), mod, dom)
def add_ground(f, c):
"""Add an element of the ground domain to ``f``. """
return f.per(f._rep.add_ground(c))
def sub_ground(f, c):
"""Subtract an element of the ground domain from ``f``. """
return f.per(f._rep.sub_ground(c))
def mul_ground(f, c):
"""Multiply ``f`` by an element of the ground domain. """
return f.per(f._rep.mul_ground(c))
def quo_ground(f, c):
"""Quotient of ``f`` by an element of the ground domain. """
return f.per(f._rep.quo_ground(c))
def neg(f):
return f.per(f._rep.neg())
def add(f, g):
F, G, mod, dom = f.unify_ANP(g)
return f.new(F.add(G), mod, dom)
def sub(f, g):
F, G, mod, dom = f.unify_ANP(g)
return f.new(F.sub(G), mod, dom)
def mul(f, g):
F, G, mod, dom = f.unify_ANP(g)
return f.new(F.mul(G).rem(mod), mod, dom)
def pow(f, n):
"""Raise ``f`` to a non-negative power ``n``. """
if not isinstance(n, int):
raise TypeError("``int`` expected, got %s" % type(n))
mod = f._mod
F = f._rep
if n < 0:
F, n = F.invert(mod), -n
# XXX: Need a pow_mod method for DMP
return f.new(F.pow(n).rem(f._mod), mod, f.dom)
def exquo(f, g):
F, G, mod, dom = f.unify_ANP(g)
return f.new(F.mul(G.invert(mod)).rem(mod), mod, dom)
def div(f, g):
return f.exquo(g), f.zero(f._mod, f.dom)
def quo(f, g):
return f.exquo(g)
def rem(f, g):
F, G, mod, dom = f.unify_ANP(g)
s, h = F.half_gcdex(G)
if h.is_one:
return f.zero(mod, dom)
else:
raise NotInvertible("zero divisor")
def LC(f):
"""Returns the leading coefficient of ``f``. """
return f._rep.LC()
def TC(f):
"""Returns the trailing coefficient of ``f``. """
return f._rep.TC()
@property
def is_zero(f):
"""Returns ``True`` if ``f`` is a zero algebraic number. """
return f._rep.is_zero
@property
def is_one(f):
"""Returns ``True`` if ``f`` is a unit algebraic number. """
return f._rep.is_one
@property
def is_ground(f):
"""Returns ``True`` if ``f`` is an element of the ground domain. """
return f._rep.is_ground
def __pos__(f):
return f
def __neg__(f):
return f.neg()
def __add__(f, g):
if isinstance(g, ANP):
return f.add(g)
try:
g = f.dom.convert(g)
except CoercionFailed:
return NotImplemented
else:
return f.add_ground(g)
def __radd__(f, g):
return f.__add__(g)
def __sub__(f, g):
if isinstance(g, ANP):
return f.sub(g)
try:
g = f.dom.convert(g)
except CoercionFailed:
return NotImplemented
else:
return f.sub_ground(g)
def __rsub__(f, g):
return (-f).__add__(g)
def __mul__(f, g):
if isinstance(g, ANP):
return f.mul(g)
try:
g = f.dom.convert(g)
except CoercionFailed:
return NotImplemented
else:
return f.mul_ground(g)
def __rmul__(f, g):
return f.__mul__(g)
def __pow__(f, n):
return f.pow(n)
def __divmod__(f, g):
return f.div(g)
def __mod__(f, g):
return f.rem(g)
def __truediv__(f, g):
if isinstance(g, ANP):
return f.quo(g)
try:
g = f.dom.convert(g)
except CoercionFailed:
return NotImplemented
else:
return f.quo_ground(g)
def __eq__(f, g):
try:
F, G, _, _ = f.unify_ANP(g)
except UnificationFailed:
return NotImplemented
return F == G
def __ne__(f, g):
try:
F, G, _, _ = f.unify_ANP(g)
except UnificationFailed:
return NotImplemented
return F != G
def __lt__(f, g):
F, G, _, _ = f.unify_ANP(g)
return F < G
def __le__(f, g):
F, G, _, _ = f.unify_ANP(g)
return F <= G
def __gt__(f, g):
F, G, _, _ = f.unify_ANP(g)
return F > G
def __ge__(f, g):
F, G, _, _ = f.unify_ANP(g)
return F >= G
def __bool__(f):
return bool(f._rep)