File size: 94,116 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
"""OO layer for several polynomial representations. """

from __future__ import annotations

from sympy.external.gmpy import GROUND_TYPES

from sympy.utilities.exceptions import sympy_deprecation_warning

from sympy.core.numbers import oo
from sympy.core.sympify import CantSympify
from sympy.polys.polyutils import PicklableWithSlots, _sort_factors
from sympy.polys.domains import Domain, ZZ, QQ

from sympy.polys.polyerrors import (
    CoercionFailed,
    ExactQuotientFailed,
    DomainError,
    NotInvertible,
)

from sympy.polys.densebasic import (
    ninf,
    dmp_validate,
    dup_normal, dmp_normal,
    dup_convert, dmp_convert,
    dmp_from_sympy,
    dup_strip,
    dmp_degree_in,
    dmp_degree_list,
    dmp_negative_p,
    dmp_ground_LC,
    dmp_ground_TC,
    dmp_ground_nth,
    dmp_one, dmp_ground,
    dmp_zero, dmp_zero_p, dmp_one_p, dmp_ground_p,
    dup_from_dict, dmp_from_dict,
    dmp_to_dict,
    dmp_deflate,
    dmp_inject, dmp_eject,
    dmp_terms_gcd,
    dmp_list_terms, dmp_exclude,
    dup_slice, dmp_slice_in, dmp_permute,
    dmp_to_tuple,)

from sympy.polys.densearith import (
    dmp_add_ground,
    dmp_sub_ground,
    dmp_mul_ground,
    dmp_quo_ground,
    dmp_exquo_ground,
    dmp_abs,
    dmp_neg,
    dmp_add,
    dmp_sub,
    dmp_mul,
    dmp_sqr,
    dmp_pow,
    dmp_pdiv,
    dmp_prem,
    dmp_pquo,
    dmp_pexquo,
    dmp_div,
    dmp_rem,
    dmp_quo,
    dmp_exquo,
    dmp_add_mul, dmp_sub_mul,
    dmp_max_norm,
    dmp_l1_norm,
    dmp_l2_norm_squared)

from sympy.polys.densetools import (
    dmp_clear_denoms,
    dmp_integrate_in,
    dmp_diff_in,
    dmp_eval_in,
    dup_revert,
    dmp_ground_trunc,
    dmp_ground_content,
    dmp_ground_primitive,
    dmp_ground_monic,
    dmp_compose,
    dup_decompose,
    dup_shift,
    dmp_shift,
    dup_transform,
    dmp_lift)

from sympy.polys.euclidtools import (
    dup_half_gcdex, dup_gcdex, dup_invert,
    dmp_subresultants,
    dmp_resultant,
    dmp_discriminant,
    dmp_inner_gcd,
    dmp_gcd,
    dmp_lcm,
    dmp_cancel)

from sympy.polys.sqfreetools import (
    dup_gff_list,
    dmp_norm,
    dmp_sqf_p,
    dmp_sqf_norm,
    dmp_sqf_part,
    dmp_sqf_list, dmp_sqf_list_include)

from sympy.polys.factortools import (
    dup_cyclotomic_p, dmp_irreducible_p,
    dmp_factor_list, dmp_factor_list_include)

from sympy.polys.rootisolation import (
    dup_isolate_real_roots_sqf,
    dup_isolate_real_roots,
    dup_isolate_all_roots_sqf,
    dup_isolate_all_roots,
    dup_refine_real_root,
    dup_count_real_roots,
    dup_count_complex_roots,
    dup_sturm,
    dup_cauchy_upper_bound,
    dup_cauchy_lower_bound,
    dup_mignotte_sep_bound_squared)

from sympy.polys.polyerrors import (
    UnificationFailed,
    PolynomialError)


_flint_domains: tuple[Domain, ...]

if GROUND_TYPES == 'flint':
    import flint
    _flint_domains = (ZZ, QQ)
else:
    flint = None
    _flint_domains = ()


class DMP(CantSympify):
    """Dense Multivariate Polynomials over `K`. """

    __slots__ = ()

    def __new__(cls, rep, dom, lev=None):

        if lev is None:
            rep, lev = dmp_validate(rep)
        elif not isinstance(rep, list):
            raise CoercionFailed("expected list, got %s" % type(rep))

        return cls.new(rep, dom, lev)

    @classmethod
    def new(cls, rep, dom, lev):
        # It would be too slow to call _validate_args always at runtime.
        # Ideally this checking would be handled by a static type checker.
        #
        #cls._validate_args(rep, dom, lev)
        if flint is not None:
            if lev == 0 and dom in _flint_domains:
                return DUP_Flint._new(rep, dom, lev)

        return DMP_Python._new(rep, dom, lev)

    @property
    def rep(f):
        """Get the representation of ``f``. """

        sympy_deprecation_warning("""
        Accessing the ``DMP.rep`` attribute is deprecated. The internal
        representation of ``DMP`` instances can now be ``DUP_Flint`` when the
        ground types are ``flint``. In this case the ``DMP`` instance does not
        have a ``rep`` attribute. Use ``DMP.to_list()`` instead. Using
        ``DMP.to_list()`` also works in previous versions of SymPy.
        """,
            deprecated_since_version="1.13",
            active_deprecations_target="dmp-rep",
        )

        return f.to_list()

    def to_best(f):
        """Convert to DUP_Flint if possible.

        This method should be used when the domain or level is changed and it
        potentially becomes possible to convert from DMP_Python to DUP_Flint.
        """
        if flint is not None:
            if isinstance(f, DMP_Python) and f.lev == 0 and f.dom in _flint_domains:
                return DUP_Flint.new(f._rep, f.dom, f.lev)

        return f

    @classmethod
    def _validate_args(cls, rep, dom, lev):
        assert isinstance(dom, Domain)
        assert isinstance(lev, int) and lev >= 0

        def validate_rep(rep, lev):
            assert isinstance(rep, list)
            if lev == 0:
                assert all(dom.of_type(c) for c in rep)
            else:
                for r in rep:
                    validate_rep(r, lev - 1)

        validate_rep(rep, lev)

    @classmethod
    def from_dict(cls, rep, lev, dom):
        rep = dmp_from_dict(rep, lev, dom)
        return cls.new(rep, dom, lev)

    @classmethod
    def from_list(cls, rep, lev, dom):
        """Create an instance of ``cls`` given a list of native coefficients. """
        return cls.new(dmp_convert(rep, lev, None, dom), dom, lev)

    @classmethod
    def from_sympy_list(cls, rep, lev, dom):
        """Create an instance of ``cls`` given a list of SymPy coefficients. """
        return cls.new(dmp_from_sympy(rep, lev, dom), dom, lev)

    @classmethod
    def from_monoms_coeffs(cls, monoms, coeffs, lev, dom):
        return cls(dict(list(zip(monoms, coeffs))), dom, lev)

    def convert(f, dom):
        """Convert ``f`` to a ``DMP`` over the new domain. """
        if f.dom == dom:
            return f
        elif f.lev or flint is None:
            return f._convert(dom)
        elif isinstance(f, DUP_Flint):
            if dom in _flint_domains:
                return f._convert(dom)
            else:
                return f.to_DMP_Python()._convert(dom)
        elif isinstance(f, DMP_Python):
            if dom in _flint_domains:
                return f._convert(dom).to_DUP_Flint()
            else:
                return f._convert(dom)
        else:
            raise RuntimeError("unreachable code")

    def _convert(f, dom):
        raise NotImplementedError

    @classmethod
    def zero(cls, lev, dom):
        return DMP(dmp_zero(lev), dom, lev)

    @classmethod
    def one(cls, lev, dom):
        return DMP(dmp_one(lev, dom), dom, lev)

    def _one(f):
        raise NotImplementedError

    def __repr__(f):
        return "%s(%s, %s)" % (f.__class__.__name__, f.to_list(), f.dom)

    def __hash__(f):
        return hash((f.__class__.__name__, f.to_tuple(), f.lev, f.dom))

    def __getnewargs__(self):
        return self.to_list(), self.dom, self.lev

    def ground_new(f, coeff):
        """Construct a new ground instance of ``f``. """
        raise NotImplementedError

    def unify_DMP(f, g):
        """Unify and return ``DMP`` instances of ``f`` and ``g``. """
        if not isinstance(g, DMP) or f.lev != g.lev:
            raise UnificationFailed("Cannot unify %s with %s" % (f, g))

        if f.dom != g.dom:
            dom = f.dom.unify(g.dom)
            f = f.convert(dom)
            g = g.convert(dom)

        return f, g

    def to_dict(f, zero=False):
        """Convert ``f`` to a dict representation with native coefficients. """
        return dmp_to_dict(f.to_list(), f.lev, f.dom, zero=zero)

    def to_sympy_dict(f, zero=False):
        """Convert ``f`` to a dict representation with SymPy coefficients. """
        rep = f.to_dict(zero=zero)

        for k, v in rep.items():
            rep[k] = f.dom.to_sympy(v)

        return rep

    def to_sympy_list(f):
        """Convert ``f`` to a list representation with SymPy coefficients. """
        def sympify_nested_list(rep):
            out = []
            for val in rep:
                if isinstance(val, list):
                    out.append(sympify_nested_list(val))
                else:
                    out.append(f.dom.to_sympy(val))
            return out

        return sympify_nested_list(f.to_list())

    def to_list(f):
        """Convert ``f`` to a list representation with native coefficients. """
        raise NotImplementedError

    def to_tuple(f):
        """
        Convert ``f`` to a tuple representation with native coefficients.

        This is needed for hashing.
        """
        raise NotImplementedError

    def to_ring(f):
        """Make the ground domain a ring. """
        return f.convert(f.dom.get_ring())

    def to_field(f):
        """Make the ground domain a field. """
        return f.convert(f.dom.get_field())

    def to_exact(f):
        """Make the ground domain exact. """
        return f.convert(f.dom.get_exact())

    def slice(f, m, n, j=0):
        """Take a continuous subsequence of terms of ``f``. """
        if not f.lev and not j:
            return f._slice(m, n)
        else:
            return f._slice_lev(m, n, j)

    def _slice(f, m, n):
        raise NotImplementedError

    def _slice_lev(f, m, n, j):
        raise NotImplementedError

    def coeffs(f, order=None):
        """Returns all non-zero coefficients from ``f`` in lex order. """
        return [ c for _, c in f.terms(order=order) ]

    def monoms(f, order=None):
        """Returns all non-zero monomials from ``f`` in lex order. """
        return [ m for m, _ in f.terms(order=order) ]

    def terms(f, order=None):
        """Returns all non-zero terms from ``f`` in lex order. """
        if f.is_zero:
            zero_monom = (0,)*(f.lev + 1)
            return [(zero_monom, f.dom.zero)]
        else:
            return f._terms(order=order)

    def _terms(f, order=None):
        raise NotImplementedError

    def all_coeffs(f):
        """Returns all coefficients from ``f``. """
        if f.lev:
            raise PolynomialError('multivariate polynomials not supported')

        if not f:
            return [f.dom.zero]
        else:
            return list(f.to_list())

    def all_monoms(f):
        """Returns all monomials from ``f``. """
        if f.lev:
            raise PolynomialError('multivariate polynomials not supported')

        n = f.degree()

        if n < 0:
            return [(0,)]
        else:
            return [ (n - i,) for i, c in enumerate(f.to_list()) ]

    def all_terms(f):
        """Returns all terms from a ``f``. """
        if f.lev:
            raise PolynomialError('multivariate polynomials not supported')

        n = f.degree()

        if n < 0:
            return [((0,), f.dom.zero)]
        else:
            return [ ((n - i,), c) for i, c in enumerate(f.to_list()) ]

    def lift(f):
        """Convert algebraic coefficients to rationals. """
        return f._lift().to_best()

    def _lift(f):
        raise NotImplementedError

    def deflate(f):
        """Reduce degree of `f` by mapping `x_i^m` to `y_i`. """
        raise NotImplementedError

    def inject(f, front=False):
        """Inject ground domain generators into ``f``. """
        raise NotImplementedError

    def eject(f, dom, front=False):
        """Eject selected generators into the ground domain. """
        raise NotImplementedError

    def exclude(f):
        r"""
        Remove useless generators from ``f``.

        Returns the removed generators and the new excluded ``f``.

        Examples
        ========

        >>> from sympy.polys.polyclasses import DMP
        >>> from sympy.polys.domains import ZZ

        >>> DMP([[[ZZ(1)]], [[ZZ(1)], [ZZ(2)]]], ZZ).exclude()
        ([2], DMP_Python([[1], [1, 2]], ZZ))

        """
        J, F = f._exclude()
        return J, F.to_best()

    def _exclude(f):
        raise NotImplementedError

    def permute(f, P):
        r"""
        Returns a polynomial in `K[x_{P(1)}, ..., x_{P(n)}]`.

        Examples
        ========

        >>> from sympy.polys.polyclasses import DMP
        >>> from sympy.polys.domains import ZZ

        >>> DMP([[[ZZ(2)], [ZZ(1), ZZ(0)]], [[]]], ZZ).permute([1, 0, 2])
        DMP_Python([[[2], []], [[1, 0], []]], ZZ)

        >>> DMP([[[ZZ(2)], [ZZ(1), ZZ(0)]], [[]]], ZZ).permute([1, 2, 0])
        DMP_Python([[[1], []], [[2, 0], []]], ZZ)

        """
        return f._permute(P)

    def _permute(f, P):
        raise NotImplementedError

    def terms_gcd(f):
        """Remove GCD of terms from the polynomial ``f``. """
        raise NotImplementedError

    def abs(f):
        """Make all coefficients in ``f`` positive. """
        raise NotImplementedError

    def neg(f):
        """Negate all coefficients in ``f``. """
        raise NotImplementedError

    def add_ground(f, c):
        """Add an element of the ground domain to ``f``. """
        return f._add_ground(f.dom.convert(c))

    def sub_ground(f, c):
        """Subtract an element of the ground domain from ``f``. """
        return f._sub_ground(f.dom.convert(c))

    def mul_ground(f, c):
        """Multiply ``f`` by a an element of the ground domain. """
        return f._mul_ground(f.dom.convert(c))

    def quo_ground(f, c):
        """Quotient of ``f`` by a an element of the ground domain. """
        return f._quo_ground(f.dom.convert(c))

    def exquo_ground(f, c):
        """Exact quotient of ``f`` by a an element of the ground domain. """
        return f._exquo_ground(f.dom.convert(c))

    def add(f, g):
        """Add two multivariate polynomials ``f`` and ``g``. """
        F, G = f.unify_DMP(g)
        return F._add(G)

    def sub(f, g):
        """Subtract two multivariate polynomials ``f`` and ``g``. """
        F, G = f.unify_DMP(g)
        return F._sub(G)

    def mul(f, g):
        """Multiply two multivariate polynomials ``f`` and ``g``. """
        F, G = f.unify_DMP(g)
        return F._mul(G)

    def sqr(f):
        """Square a multivariate polynomial ``f``. """
        return f._sqr()

    def pow(f, n):
        """Raise ``f`` to a non-negative power ``n``. """
        if not isinstance(n, int):
            raise TypeError("``int`` expected, got %s" % type(n))
        return f._pow(n)

    def pdiv(f, g):
        """Polynomial pseudo-division of ``f`` and ``g``. """
        F, G = f.unify_DMP(g)
        return F._pdiv(G)

    def prem(f, g):
        """Polynomial pseudo-remainder of ``f`` and ``g``. """
        F, G = f.unify_DMP(g)
        return F._prem(G)

    def pquo(f, g):
        """Polynomial pseudo-quotient of ``f`` and ``g``. """
        F, G = f.unify_DMP(g)
        return F._pquo(G)

    def pexquo(f, g):
        """Polynomial exact pseudo-quotient of ``f`` and ``g``. """
        F, G = f.unify_DMP(g)
        return F._pexquo(G)

    def div(f, g):
        """Polynomial division with remainder of ``f`` and ``g``. """
        F, G = f.unify_DMP(g)
        return F._div(G)

    def rem(f, g):
        """Computes polynomial remainder of ``f`` and ``g``. """
        F, G = f.unify_DMP(g)
        return F._rem(G)

    def quo(f, g):
        """Computes polynomial quotient of ``f`` and ``g``. """
        F, G = f.unify_DMP(g)
        return F._quo(G)

    def exquo(f, g):
        """Computes polynomial exact quotient of ``f`` and ``g``. """
        F, G = f.unify_DMP(g)
        return F._exquo(G)

    def _add_ground(f, c):
        raise NotImplementedError

    def _sub_ground(f, c):
        raise NotImplementedError

    def _mul_ground(f, c):
        raise NotImplementedError

    def _quo_ground(f, c):
        raise NotImplementedError

    def _exquo_ground(f, c):
        raise NotImplementedError

    def _add(f, g):
        raise NotImplementedError

    def _sub(f, g):
        raise NotImplementedError

    def _mul(f, g):
        raise NotImplementedError

    def _sqr(f):
        raise NotImplementedError

    def _pow(f, n):
        raise NotImplementedError

    def _pdiv(f, g):
        raise NotImplementedError

    def _prem(f, g):
        raise NotImplementedError

    def _pquo(f, g):
        raise NotImplementedError

    def _pexquo(f, g):
        raise NotImplementedError

    def _div(f, g):
        raise NotImplementedError

    def _rem(f, g):
        raise NotImplementedError

    def _quo(f, g):
        raise NotImplementedError

    def _exquo(f, g):
        raise NotImplementedError

    def degree(f, j=0):
        """Returns the leading degree of ``f`` in ``x_j``. """
        if not isinstance(j, int):
            raise TypeError("``int`` expected, got %s" % type(j))

        return f._degree(j)

    def _degree(f, j):
        raise NotImplementedError

    def degree_list(f):
        """Returns a list of degrees of ``f``. """
        raise NotImplementedError

    def total_degree(f):
        """Returns the total degree of ``f``. """
        raise NotImplementedError

    def homogenize(f, s):
        """Return homogeneous polynomial of ``f``"""
        td = f.total_degree()
        result = {}
        new_symbol = (s == len(f.terms()[0][0]))
        for term in f.terms():
            d = sum(term[0])
            if d < td:
                i = td - d
            else:
                i = 0
            if new_symbol:
                result[term[0] + (i,)] = term[1]
            else:
                l = list(term[0])
                l[s] += i
                result[tuple(l)] = term[1]
        return DMP.from_dict(result, f.lev + int(new_symbol), f.dom)

    def homogeneous_order(f):
        """Returns the homogeneous order of ``f``. """
        if f.is_zero:
            return -oo

        monoms = f.monoms()
        tdeg = sum(monoms[0])

        for monom in monoms:
            _tdeg = sum(monom)

            if _tdeg != tdeg:
                return None

        return tdeg

    def LC(f):
        """Returns the leading coefficient of ``f``. """
        raise NotImplementedError

    def TC(f):
        """Returns the trailing coefficient of ``f``. """
        raise NotImplementedError

    def nth(f, *N):
        """Returns the ``n``-th coefficient of ``f``. """
        if all(isinstance(n, int) for n in N):
            return f._nth(N)
        else:
            raise TypeError("a sequence of integers expected")

    def _nth(f, N):
        raise NotImplementedError

    def max_norm(f):
        """Returns maximum norm of ``f``. """
        raise NotImplementedError

    def l1_norm(f):
        """Returns l1 norm of ``f``. """
        raise NotImplementedError

    def l2_norm_squared(f):
        """Return squared l2 norm of ``f``. """
        raise NotImplementedError

    def clear_denoms(f):
        """Clear denominators, but keep the ground domain. """
        raise NotImplementedError

    def integrate(f, m=1, j=0):
        """Computes the ``m``-th order indefinite integral of ``f`` in ``x_j``. """
        if not isinstance(m, int):
            raise TypeError("``int`` expected, got %s" % type(m))

        if not isinstance(j, int):
            raise TypeError("``int`` expected, got %s" % type(j))

        return f._integrate(m, j)

    def _integrate(f, m, j):
        raise NotImplementedError

    def diff(f, m=1, j=0):
        """Computes the ``m``-th order derivative of ``f`` in ``x_j``. """
        if not isinstance(m, int):
            raise TypeError("``int`` expected, got %s" % type(m))

        if not isinstance(j, int):
            raise TypeError("``int`` expected, got %s" % type(j))

        return f._diff(m, j)

    def _diff(f, m, j):
        raise NotImplementedError

    def eval(f, a, j=0):
        """Evaluates ``f`` at the given point ``a`` in ``x_j``. """
        if not isinstance(j, int):
            raise TypeError("``int`` expected, got %s" % type(j))
        elif not (0 <= j <= f.lev):
            raise ValueError("invalid variable index %s" % j)

        if f.lev:
            return f._eval_lev(a, j)
        else:
            return f._eval(a)

    def _eval(f, a):
        raise NotImplementedError

    def _eval_lev(f, a, j):
        raise NotImplementedError

    def half_gcdex(f, g):
        """Half extended Euclidean algorithm, if univariate. """
        F, G = f.unify_DMP(g)

        if F.lev:
            raise ValueError('univariate polynomial expected')

        return F._half_gcdex(G)

    def _half_gcdex(f, g):
        raise NotImplementedError

    def gcdex(f, g):
        """Extended Euclidean algorithm, if univariate. """
        F, G = f.unify_DMP(g)

        if F.lev:
            raise ValueError('univariate polynomial expected')

        if not F.dom.is_Field:
            raise DomainError('ground domain must be a field')

        return F._gcdex(G)

    def _gcdex(f, g):
        raise NotImplementedError

    def invert(f, g):
        """Invert ``f`` modulo ``g``, if possible. """
        F, G = f.unify_DMP(g)

        if F.lev:
            raise ValueError('univariate polynomial expected')

        return F._invert(G)

    def _invert(f, g):
        raise NotImplementedError

    def revert(f, n):
        """Compute ``f**(-1)`` mod ``x**n``. """
        if f.lev:
            raise ValueError('univariate polynomial expected')

        return f._revert(n)

    def _revert(f, n):
        raise NotImplementedError

    def subresultants(f, g):
        """Computes subresultant PRS sequence of ``f`` and ``g``. """
        F, G = f.unify_DMP(g)
        return F._subresultants(G)

    def _subresultants(f, g):
        raise NotImplementedError

    def resultant(f, g, includePRS=False):
        """Computes resultant of ``f`` and ``g`` via PRS. """
        F, G = f.unify_DMP(g)
        if includePRS:
            return F._resultant_includePRS(G)
        else:
            return F._resultant(G)

    def _resultant(f, g, includePRS=False):
        raise NotImplementedError

    def discriminant(f):
        """Computes discriminant of ``f``. """
        raise NotImplementedError

    def cofactors(f, g):
        """Returns GCD of ``f`` and ``g`` and their cofactors. """
        F, G = f.unify_DMP(g)
        return F._cofactors(G)

    def _cofactors(f, g):
        raise NotImplementedError

    def gcd(f, g):
        """Returns polynomial GCD of ``f`` and ``g``. """
        F, G = f.unify_DMP(g)
        return F._gcd(G)

    def _gcd(f, g):
        raise NotImplementedError

    def lcm(f, g):
        """Returns polynomial LCM of ``f`` and ``g``. """
        F, G = f.unify_DMP(g)
        return F._lcm(G)

    def _lcm(f, g):
        raise NotImplementedError

    def cancel(f, g, include=True):
        """Cancel common factors in a rational function ``f/g``. """
        F, G = f.unify_DMP(g)

        if include:
            return F._cancel_include(G)
        else:
            return F._cancel(G)

    def _cancel(f, g):
        raise NotImplementedError

    def _cancel_include(f, g):
        raise NotImplementedError

    def trunc(f, p):
        """Reduce ``f`` modulo a constant ``p``. """
        return f._trunc(f.dom.convert(p))

    def _trunc(f, p):
        raise NotImplementedError

    def monic(f):
        """Divides all coefficients by ``LC(f)``. """
        raise NotImplementedError

    def content(f):
        """Returns GCD of polynomial coefficients. """
        raise NotImplementedError

    def primitive(f):
        """Returns content and a primitive form of ``f``. """
        raise NotImplementedError

    def compose(f, g):
        """Computes functional composition of ``f`` and ``g``. """
        F, G = f.unify_DMP(g)
        return F._compose(G)

    def _compose(f, g):
        raise NotImplementedError

    def decompose(f):
        """Computes functional decomposition of ``f``. """
        if f.lev:
            raise ValueError('univariate polynomial expected')

        return f._decompose()

    def _decompose(f):
        raise NotImplementedError

    def shift(f, a):
        """Efficiently compute Taylor shift ``f(x + a)``. """
        if f.lev:
            raise ValueError('univariate polynomial expected')

        return f._shift(f.dom.convert(a))

    def shift_list(f, a):
        """Efficiently compute Taylor shift ``f(X + A)``. """
        a = [f.dom.convert(ai) for ai in a]
        return f._shift_list(a)

    def _shift(f, a):
        raise NotImplementedError

    def transform(f, p, q):
        """Evaluate functional transformation ``q**n * f(p/q)``."""
        if f.lev:
            raise ValueError('univariate polynomial expected')

        P, Q = p.unify_DMP(q)
        F, P = f.unify_DMP(P)
        F, Q = F.unify_DMP(Q)

        return F._transform(P, Q)

    def _transform(f, p, q):
        raise NotImplementedError

    def sturm(f):
        """Computes the Sturm sequence of ``f``. """
        if f.lev:
            raise ValueError('univariate polynomial expected')

        return f._sturm()

    def _sturm(f):
        raise NotImplementedError

    def cauchy_upper_bound(f):
        """Computes the Cauchy upper bound on the roots of ``f``. """
        if f.lev:
            raise ValueError('univariate polynomial expected')

        return f._cauchy_upper_bound()

    def _cauchy_upper_bound(f):
        raise NotImplementedError

    def cauchy_lower_bound(f):
        """Computes the Cauchy lower bound on the nonzero roots of ``f``. """
        if f.lev:
            raise ValueError('univariate polynomial expected')

        return f._cauchy_lower_bound()

    def _cauchy_lower_bound(f):
        raise NotImplementedError

    def mignotte_sep_bound_squared(f):
        """Computes the squared Mignotte bound on root separations of ``f``. """
        if f.lev:
            raise ValueError('univariate polynomial expected')

        return f._mignotte_sep_bound_squared()

    def _mignotte_sep_bound_squared(f):
        raise NotImplementedError

    def gff_list(f):
        """Computes greatest factorial factorization of ``f``. """
        if f.lev:
            raise ValueError('univariate polynomial expected')

        return f._gff_list()

    def _gff_list(f):
        raise NotImplementedError

    def norm(f):
        """Computes ``Norm(f)``."""
        raise NotImplementedError

    def sqf_norm(f):
        """Computes square-free norm of ``f``. """
        raise NotImplementedError

    def sqf_part(f):
        """Computes square-free part of ``f``. """
        raise NotImplementedError

    def sqf_list(f, all=False):
        """Returns a list of square-free factors of ``f``. """
        raise NotImplementedError

    def sqf_list_include(f, all=False):
        """Returns a list of square-free factors of ``f``. """
        raise NotImplementedError

    def factor_list(f):
        """Returns a list of irreducible factors of ``f``. """
        raise NotImplementedError

    def factor_list_include(f):
        """Returns a list of irreducible factors of ``f``. """
        raise NotImplementedError

    def intervals(f, all=False, eps=None, inf=None, sup=None, fast=False, sqf=False):
        """Compute isolating intervals for roots of ``f``. """
        if f.lev:
            raise PolynomialError("Cannot isolate roots of a multivariate polynomial")

        if all and sqf:
            return f._isolate_all_roots_sqf(eps=eps, inf=inf, sup=sup, fast=fast)
        elif all and not sqf:
            return f._isolate_all_roots(eps=eps, inf=inf, sup=sup, fast=fast)
        elif not all and sqf:
            return f._isolate_real_roots_sqf(eps=eps, inf=inf, sup=sup, fast=fast)
        else:
            return f._isolate_real_roots(eps=eps, inf=inf, sup=sup, fast=fast)

    def _isolate_all_roots(f, eps, inf, sup, fast):
        raise NotImplementedError

    def _isolate_all_roots_sqf(f, eps, inf, sup, fast):
        raise NotImplementedError

    def _isolate_real_roots(f, eps, inf, sup, fast):
        raise NotImplementedError

    def _isolate_real_roots_sqf(f, eps, inf, sup, fast):
        raise NotImplementedError

    def refine_root(f, s, t, eps=None, steps=None, fast=False):
        """
        Refine an isolating interval to the given precision.

        ``eps`` should be a rational number.

        """
        if f.lev:
            raise PolynomialError(
                "Cannot refine a root of a multivariate polynomial")

        return f._refine_real_root(s, t, eps=eps, steps=steps, fast=fast)

    def _refine_real_root(f, s, t, eps, steps, fast):
        raise NotImplementedError

    def count_real_roots(f, inf=None, sup=None):
        """Return the number of real roots of ``f`` in ``[inf, sup]``. """
        raise NotImplementedError

    def count_complex_roots(f, inf=None, sup=None):
        """Return the number of complex roots of ``f`` in ``[inf, sup]``. """
        raise NotImplementedError

    @property
    def is_zero(f):
        """Returns ``True`` if ``f`` is a zero polynomial. """
        raise NotImplementedError

    @property
    def is_one(f):
        """Returns ``True`` if ``f`` is a unit polynomial. """
        raise NotImplementedError

    @property
    def is_ground(f):
        """Returns ``True`` if ``f`` is an element of the ground domain. """
        raise NotImplementedError

    @property
    def is_sqf(f):
        """Returns ``True`` if ``f`` is a square-free polynomial. """
        raise NotImplementedError

    @property
    def is_monic(f):
        """Returns ``True`` if the leading coefficient of ``f`` is one. """
        raise NotImplementedError

    @property
    def is_primitive(f):
        """Returns ``True`` if the GCD of the coefficients of ``f`` is one. """
        raise NotImplementedError

    @property
    def is_linear(f):
        """Returns ``True`` if ``f`` is linear in all its variables. """
        raise NotImplementedError

    @property
    def is_quadratic(f):
        """Returns ``True`` if ``f`` is quadratic in all its variables. """
        raise NotImplementedError

    @property
    def is_monomial(f):
        """Returns ``True`` if ``f`` is zero or has only one term. """
        raise NotImplementedError

    @property
    def is_homogeneous(f):
        """Returns ``True`` if ``f`` is a homogeneous polynomial. """
        raise NotImplementedError

    @property
    def is_irreducible(f):
        """Returns ``True`` if ``f`` has no factors over its domain. """
        raise NotImplementedError

    @property
    def is_cyclotomic(f):
        """Returns ``True`` if ``f`` is a cyclotomic polynomial. """
        raise NotImplementedError

    def __abs__(f):
        return f.abs()

    def __neg__(f):
        return f.neg()

    def __add__(f, g):
        if isinstance(g, DMP):
            return f.add(g)
        else:
            try:
                return f.add_ground(g)
            except CoercionFailed:
                return NotImplemented

    def __radd__(f, g):
        return f.__add__(g)

    def __sub__(f, g):
        if isinstance(g, DMP):
            return f.sub(g)
        else:
            try:
                return f.sub_ground(g)
            except CoercionFailed:
                return NotImplemented

    def __rsub__(f, g):
        return (-f).__add__(g)

    def __mul__(f, g):
        if isinstance(g, DMP):
            return f.mul(g)
        else:
            try:
                return f.mul_ground(g)
            except CoercionFailed:
                return NotImplemented

    def __rmul__(f, g):
        return f.__mul__(g)

    def __truediv__(f, g):
        if isinstance(g, DMP):
            return f.exquo(g)
        else:
            try:
                return f.mul_ground(g)
            except CoercionFailed:
                return NotImplemented

    def __rtruediv__(f, g):
        if isinstance(g, DMP):
            return g.exquo(f)
        else:
            try:
                return f._one().mul_ground(g).exquo(f)
            except CoercionFailed:
                return NotImplemented

    def __pow__(f, n):
        return f.pow(n)

    def __divmod__(f, g):
        return f.div(g)

    def __mod__(f, g):
        return f.rem(g)

    def __floordiv__(f, g):
        if isinstance(g, DMP):
            return f.quo(g)
        else:
            try:
                return f.quo_ground(g)
            except TypeError:
                return NotImplemented

    def __eq__(f, g):
        if f is g:
            return True
        if not isinstance(g, DMP):
            return NotImplemented
        try:
            F, G = f.unify_DMP(g)
        except UnificationFailed:
            return False
        else:
            return F._strict_eq(G)

    def _strict_eq(f, g):
        raise NotImplementedError

    def eq(f, g, strict=False):
        if not strict:
            return f == g
        else:
            return f._strict_eq(g)

    def ne(f, g, strict=False):
        return not f.eq(g, strict=strict)

    def __lt__(f, g):
        F, G = f.unify_DMP(g)
        return F.to_list() < G.to_list()

    def __le__(f, g):
        F, G = f.unify_DMP(g)
        return F.to_list() <= G.to_list()

    def __gt__(f, g):
        F, G = f.unify_DMP(g)
        return F.to_list() > G.to_list()

    def __ge__(f, g):
        F, G = f.unify_DMP(g)
        return F.to_list() >= G.to_list()

    def __bool__(f):
        return not f.is_zero


class DMP_Python(DMP):
    """Dense Multivariate Polynomials over `K`. """

    __slots__ = ('_rep', 'dom', 'lev')

    @classmethod
    def _new(cls, rep, dom, lev):
        obj = object.__new__(cls)
        obj._rep = rep
        obj.lev = lev
        obj.dom = dom
        return obj

    def _strict_eq(f, g):
        if type(f) != type(g):
            return False
        return f.lev == g.lev and f.dom == g.dom and f._rep == g._rep

    def per(f, rep):
        """Create a DMP out of the given representation. """
        return f._new(rep, f.dom, f.lev)

    def ground_new(f, coeff):
        """Construct a new ground instance of ``f``. """
        return f._new(dmp_ground(coeff, f.lev), f.dom, f.lev)

    def _one(f):
        return f.one(f.lev, f.dom)

    def unify(f, g):
        """Unify representations of two multivariate polynomials. """
        # XXX: This function is not really used any more since there is
        # unify_DMP now.
        if not isinstance(g, DMP) or f.lev != g.lev:
            raise UnificationFailed("Cannot unify %s with %s" % (f, g))

        if f.dom == g.dom:
            return f.lev, f.dom, f.per, f._rep, g._rep
        else:
            lev, dom = f.lev, f.dom.unify(g.dom)

            F = dmp_convert(f._rep, lev, f.dom, dom)
            G = dmp_convert(g._rep, lev, g.dom, dom)

            def per(rep):
                return f._new(rep, dom, lev)

            return lev, dom, per, F, G

    def to_DUP_Flint(f):
        """Convert ``f`` to a Flint representation. """
        return DUP_Flint._new(f._rep, f.dom, f.lev)

    def to_list(f):
        """Convert ``f`` to a list representation with native coefficients. """
        return list(f._rep)

    def to_tuple(f):
        """Convert ``f`` to a tuple representation with native coefficients. """
        return dmp_to_tuple(f._rep, f.lev)

    def _convert(f, dom):
        """Convert the ground domain of ``f``. """
        return f._new(dmp_convert(f._rep, f.lev, f.dom, dom), dom, f.lev)

    def _slice(f, m, n):
        """Take a continuous subsequence of terms of ``f``. """
        rep = dup_slice(f._rep, m, n, f.dom)
        return f._new(rep, f.dom, f.lev)

    def _slice_lev(f, m, n, j):
        """Take a continuous subsequence of terms of ``f``. """
        rep = dmp_slice_in(f._rep, m, n, j, f.lev, f.dom)
        return f._new(rep, f.dom, f.lev)

    def _terms(f, order=None):
        """Returns all non-zero terms from ``f`` in lex order. """
        return dmp_list_terms(f._rep, f.lev, f.dom, order=order)

    def _lift(f):
        """Convert algebraic coefficients to rationals. """
        r = dmp_lift(f._rep, f.lev, f.dom)
        return f._new(r, f.dom.dom, f.lev)

    def deflate(f):
        """Reduce degree of `f` by mapping `x_i^m` to `y_i`. """
        J, F = dmp_deflate(f._rep, f.lev, f.dom)
        return J, f.per(F)

    def inject(f, front=False):
        """Inject ground domain generators into ``f``. """
        F, lev = dmp_inject(f._rep, f.lev, f.dom, front=front)
        # XXX: domain and level changed here
        return f._new(F, f.dom.dom, lev)

    def eject(f, dom, front=False):
        """Eject selected generators into the ground domain. """
        F = dmp_eject(f._rep, f.lev, dom, front=front)
        # XXX: domain and level changed here
        return f._new(F, dom, f.lev - len(dom.symbols))

    def _exclude(f):
        """Remove useless generators from ``f``. """
        J, F, u = dmp_exclude(f._rep, f.lev, f.dom)
        # XXX: level changed here
        return J, f._new(F, f.dom, u)

    def _permute(f, P):
        """Returns a polynomial in `K[x_{P(1)}, ..., x_{P(n)}]`. """
        return f.per(dmp_permute(f._rep, P, f.lev, f.dom))

    def terms_gcd(f):
        """Remove GCD of terms from the polynomial ``f``. """
        J, F = dmp_terms_gcd(f._rep, f.lev, f.dom)
        return J, f.per(F)

    def _add_ground(f, c):
        """Add an element of the ground domain to ``f``. """
        return f.per(dmp_add_ground(f._rep, c, f.lev, f.dom))

    def _sub_ground(f, c):
        """Subtract an element of the ground domain from ``f``. """
        return f.per(dmp_sub_ground(f._rep, c, f.lev, f.dom))

    def _mul_ground(f, c):
        """Multiply ``f`` by a an element of the ground domain. """
        return f.per(dmp_mul_ground(f._rep, c, f.lev, f.dom))

    def _quo_ground(f, c):
        """Quotient of ``f`` by a an element of the ground domain. """
        return f.per(dmp_quo_ground(f._rep, c, f.lev, f.dom))

    def _exquo_ground(f, c):
        """Exact quotient of ``f`` by a an element of the ground domain. """
        return f.per(dmp_exquo_ground(f._rep, c, f.lev, f.dom))

    def abs(f):
        """Make all coefficients in ``f`` positive. """
        return f.per(dmp_abs(f._rep, f.lev, f.dom))

    def neg(f):
        """Negate all coefficients in ``f``. """
        return f.per(dmp_neg(f._rep, f.lev, f.dom))

    def _add(f, g):
        """Add two multivariate polynomials ``f`` and ``g``. """
        return f.per(dmp_add(f._rep, g._rep, f.lev, f.dom))

    def _sub(f, g):
        """Subtract two multivariate polynomials ``f`` and ``g``. """
        return f.per(dmp_sub(f._rep, g._rep, f.lev, f.dom))

    def _mul(f, g):
        """Multiply two multivariate polynomials ``f`` and ``g``. """
        return f.per(dmp_mul(f._rep, g._rep, f.lev, f.dom))

    def sqr(f):
        """Square a multivariate polynomial ``f``. """
        return f.per(dmp_sqr(f._rep, f.lev, f.dom))

    def _pow(f, n):
        """Raise ``f`` to a non-negative power ``n``. """
        return f.per(dmp_pow(f._rep, n, f.lev, f.dom))

    def _pdiv(f, g):
        """Polynomial pseudo-division of ``f`` and ``g``. """
        q, r = dmp_pdiv(f._rep, g._rep, f.lev, f.dom)
        return f.per(q), f.per(r)

    def _prem(f, g):
        """Polynomial pseudo-remainder of ``f`` and ``g``. """
        return f.per(dmp_prem(f._rep, g._rep, f.lev, f.dom))

    def _pquo(f, g):
        """Polynomial pseudo-quotient of ``f`` and ``g``. """
        return f.per(dmp_pquo(f._rep, g._rep, f.lev, f.dom))

    def _pexquo(f, g):
        """Polynomial exact pseudo-quotient of ``f`` and ``g``. """
        return f.per(dmp_pexquo(f._rep, g._rep, f.lev, f.dom))

    def _div(f, g):
        """Polynomial division with remainder of ``f`` and ``g``. """
        q, r = dmp_div(f._rep, g._rep, f.lev, f.dom)
        return f.per(q), f.per(r)

    def _rem(f, g):
        """Computes polynomial remainder of ``f`` and ``g``. """
        return f.per(dmp_rem(f._rep, g._rep, f.lev, f.dom))

    def _quo(f, g):
        """Computes polynomial quotient of ``f`` and ``g``. """
        return f.per(dmp_quo(f._rep, g._rep, f.lev, f.dom))

    def _exquo(f, g):
        """Computes polynomial exact quotient of ``f`` and ``g``. """
        return f.per(dmp_exquo(f._rep, g._rep, f.lev, f.dom))

    def _degree(f, j=0):
        """Returns the leading degree of ``f`` in ``x_j``. """
        return dmp_degree_in(f._rep, j, f.lev)

    def degree_list(f):
        """Returns a list of degrees of ``f``. """
        return dmp_degree_list(f._rep, f.lev)

    def total_degree(f):
        """Returns the total degree of ``f``. """
        return max(sum(m) for m in f.monoms())

    def LC(f):
        """Returns the leading coefficient of ``f``. """
        return dmp_ground_LC(f._rep, f.lev, f.dom)

    def TC(f):
        """Returns the trailing coefficient of ``f``. """
        return dmp_ground_TC(f._rep, f.lev, f.dom)

    def _nth(f, N):
        """Returns the ``n``-th coefficient of ``f``. """
        return dmp_ground_nth(f._rep, N, f.lev, f.dom)

    def max_norm(f):
        """Returns maximum norm of ``f``. """
        return dmp_max_norm(f._rep, f.lev, f.dom)

    def l1_norm(f):
        """Returns l1 norm of ``f``. """
        return dmp_l1_norm(f._rep, f.lev, f.dom)

    def l2_norm_squared(f):
        """Return squared l2 norm of ``f``. """
        return dmp_l2_norm_squared(f._rep, f.lev, f.dom)

    def clear_denoms(f):
        """Clear denominators, but keep the ground domain. """
        coeff, F = dmp_clear_denoms(f._rep, f.lev, f.dom)
        return coeff, f.per(F)

    def _integrate(f, m=1, j=0):
        """Computes the ``m``-th order indefinite integral of ``f`` in ``x_j``. """
        return f.per(dmp_integrate_in(f._rep, m, j, f.lev, f.dom))

    def _diff(f, m=1, j=0):
        """Computes the ``m``-th order derivative of ``f`` in ``x_j``. """
        return f.per(dmp_diff_in(f._rep, m, j, f.lev, f.dom))

    def _eval(f, a):
        return dmp_eval_in(f._rep, f.dom.convert(a), 0, f.lev, f.dom)

    def _eval_lev(f, a, j):
        rep = dmp_eval_in(f._rep, f.dom.convert(a), j, f.lev, f.dom)
        return f.new(rep, f.dom, f.lev - 1)

    def _half_gcdex(f, g):
        """Half extended Euclidean algorithm, if univariate. """
        s, h = dup_half_gcdex(f._rep, g._rep, f.dom)
        return f.per(s), f.per(h)

    def _gcdex(f, g):
        """Extended Euclidean algorithm, if univariate. """
        s, t, h = dup_gcdex(f._rep, g._rep, f.dom)
        return f.per(s), f.per(t), f.per(h)

    def _invert(f, g):
        """Invert ``f`` modulo ``g``, if possible. """
        s = dup_invert(f._rep, g._rep, f.dom)
        return f.per(s)

    def _revert(f, n):
        """Compute ``f**(-1)`` mod ``x**n``. """
        return f.per(dup_revert(f._rep, n, f.dom))

    def _subresultants(f, g):
        """Computes subresultant PRS sequence of ``f`` and ``g``. """
        R = dmp_subresultants(f._rep, g._rep, f.lev, f.dom)
        return list(map(f.per, R))

    def _resultant_includePRS(f, g):
        """Computes resultant of ``f`` and ``g`` via PRS. """
        res, R = dmp_resultant(f._rep, g._rep, f.lev, f.dom, includePRS=True)
        if f.lev:
            res = f.new(res, f.dom, f.lev - 1)
        return res, list(map(f.per, R))

    def _resultant(f, g):
        res = dmp_resultant(f._rep, g._rep, f.lev, f.dom)
        if f.lev:
            res = f.new(res, f.dom, f.lev - 1)
        return res

    def discriminant(f):
        """Computes discriminant of ``f``. """
        res = dmp_discriminant(f._rep, f.lev, f.dom)
        if f.lev:
            res = f.new(res, f.dom, f.lev - 1)
        return res

    def _cofactors(f, g):
        """Returns GCD of ``f`` and ``g`` and their cofactors. """
        h, cff, cfg = dmp_inner_gcd(f._rep, g._rep, f.lev, f.dom)
        return f.per(h), f.per(cff), f.per(cfg)

    def _gcd(f, g):
        """Returns polynomial GCD of ``f`` and ``g``. """
        return f.per(dmp_gcd(f._rep, g._rep, f.lev, f.dom))

    def _lcm(f, g):
        """Returns polynomial LCM of ``f`` and ``g``. """
        return f.per(dmp_lcm(f._rep, g._rep, f.lev, f.dom))

    def _cancel(f, g):
        """Cancel common factors in a rational function ``f/g``. """
        cF, cG, F, G = dmp_cancel(f._rep, g._rep, f.lev, f.dom, include=False)
        return cF, cG, f.per(F), f.per(G)

    def _cancel_include(f, g):
        """Cancel common factors in a rational function ``f/g``. """
        F, G = dmp_cancel(f._rep, g._rep, f.lev, f.dom, include=True)
        return f.per(F), f.per(G)

    def _trunc(f, p):
        """Reduce ``f`` modulo a constant ``p``. """
        return f.per(dmp_ground_trunc(f._rep, p, f.lev, f.dom))

    def monic(f):
        """Divides all coefficients by ``LC(f)``. """
        return f.per(dmp_ground_monic(f._rep, f.lev, f.dom))

    def content(f):
        """Returns GCD of polynomial coefficients. """
        return dmp_ground_content(f._rep, f.lev, f.dom)

    def primitive(f):
        """Returns content and a primitive form of ``f``. """
        cont, F = dmp_ground_primitive(f._rep, f.lev, f.dom)
        return cont, f.per(F)

    def _compose(f, g):
        """Computes functional composition of ``f`` and ``g``. """
        return f.per(dmp_compose(f._rep, g._rep, f.lev, f.dom))

    def _decompose(f):
        """Computes functional decomposition of ``f``. """
        return list(map(f.per, dup_decompose(f._rep, f.dom)))

    def _shift(f, a):
        """Efficiently compute Taylor shift ``f(x + a)``. """
        return f.per(dup_shift(f._rep, a, f.dom))

    def _shift_list(f, a):
        """Efficiently compute Taylor shift ``f(X + A)``. """
        return f.per(dmp_shift(f._rep, a, f.lev, f.dom))

    def _transform(f, p, q):
        """Evaluate functional transformation ``q**n * f(p/q)``."""
        return f.per(dup_transform(f._rep, p._rep, q._rep, f.dom))

    def _sturm(f):
        """Computes the Sturm sequence of ``f``. """
        return list(map(f.per, dup_sturm(f._rep, f.dom)))

    def _cauchy_upper_bound(f):
        """Computes the Cauchy upper bound on the roots of ``f``. """
        return dup_cauchy_upper_bound(f._rep, f.dom)

    def _cauchy_lower_bound(f):
        """Computes the Cauchy lower bound on the nonzero roots of ``f``. """
        return dup_cauchy_lower_bound(f._rep, f.dom)

    def _mignotte_sep_bound_squared(f):
        """Computes the squared Mignotte bound on root separations of ``f``. """
        return dup_mignotte_sep_bound_squared(f._rep, f.dom)

    def _gff_list(f):
        """Computes greatest factorial factorization of ``f``. """
        return [ (f.per(g), k) for g, k in dup_gff_list(f._rep, f.dom) ]

    def norm(f):
        """Computes ``Norm(f)``."""
        r = dmp_norm(f._rep, f.lev, f.dom)
        return f.new(r, f.dom.dom, f.lev)

    def sqf_norm(f):
        """Computes square-free norm of ``f``. """
        s, g, r = dmp_sqf_norm(f._rep, f.lev, f.dom)
        return s, f.per(g), f.new(r, f.dom.dom, f.lev)

    def sqf_part(f):
        """Computes square-free part of ``f``. """
        return f.per(dmp_sqf_part(f._rep, f.lev, f.dom))

    def sqf_list(f, all=False):
        """Returns a list of square-free factors of ``f``. """
        coeff, factors = dmp_sqf_list(f._rep, f.lev, f.dom, all)
        return coeff, [ (f.per(g), k) for g, k in factors ]

    def sqf_list_include(f, all=False):
        """Returns a list of square-free factors of ``f``. """
        factors = dmp_sqf_list_include(f._rep, f.lev, f.dom, all)
        return [ (f.per(g), k) for g, k in factors ]

    def factor_list(f):
        """Returns a list of irreducible factors of ``f``. """
        coeff, factors = dmp_factor_list(f._rep, f.lev, f.dom)
        return coeff, [ (f.per(g), k) for g, k in factors ]

    def factor_list_include(f):
        """Returns a list of irreducible factors of ``f``. """
        factors = dmp_factor_list_include(f._rep, f.lev, f.dom)
        return [ (f.per(g), k) for g, k in factors ]

    def _isolate_real_roots(f, eps, inf, sup, fast):
        return dup_isolate_real_roots(f._rep, f.dom, eps=eps, inf=inf, sup=sup, fast=fast)

    def _isolate_real_roots_sqf(f, eps, inf, sup, fast):
        return dup_isolate_real_roots_sqf(f._rep, f.dom, eps=eps, inf=inf, sup=sup, fast=fast)

    def _isolate_all_roots(f, eps, inf, sup, fast):
        return dup_isolate_all_roots(f._rep, f.dom, eps=eps, inf=inf, sup=sup, fast=fast)

    def _isolate_all_roots_sqf(f, eps, inf, sup, fast):
        return dup_isolate_all_roots_sqf(f._rep, f.dom, eps=eps, inf=inf, sup=sup, fast=fast)

    def _refine_real_root(f, s, t, eps, steps, fast):
        return dup_refine_real_root(f._rep, s, t, f.dom, eps=eps, steps=steps, fast=fast)

    def count_real_roots(f, inf=None, sup=None):
        """Return the number of real roots of ``f`` in ``[inf, sup]``. """
        return dup_count_real_roots(f._rep, f.dom, inf=inf, sup=sup)

    def count_complex_roots(f, inf=None, sup=None):
        """Return the number of complex roots of ``f`` in ``[inf, sup]``. """
        return dup_count_complex_roots(f._rep, f.dom, inf=inf, sup=sup)

    @property
    def is_zero(f):
        """Returns ``True`` if ``f`` is a zero polynomial. """
        return dmp_zero_p(f._rep, f.lev)

    @property
    def is_one(f):
        """Returns ``True`` if ``f`` is a unit polynomial. """
        return dmp_one_p(f._rep, f.lev, f.dom)

    @property
    def is_ground(f):
        """Returns ``True`` if ``f`` is an element of the ground domain. """
        return dmp_ground_p(f._rep, None, f.lev)

    @property
    def is_sqf(f):
        """Returns ``True`` if ``f`` is a square-free polynomial. """
        return dmp_sqf_p(f._rep, f.lev, f.dom)

    @property
    def is_monic(f):
        """Returns ``True`` if the leading coefficient of ``f`` is one. """
        return f.dom.is_one(dmp_ground_LC(f._rep, f.lev, f.dom))

    @property
    def is_primitive(f):
        """Returns ``True`` if the GCD of the coefficients of ``f`` is one. """
        return f.dom.is_one(dmp_ground_content(f._rep, f.lev, f.dom))

    @property
    def is_linear(f):
        """Returns ``True`` if ``f`` is linear in all its variables. """
        return all(sum(monom) <= 1 for monom in dmp_to_dict(f._rep, f.lev, f.dom).keys())

    @property
    def is_quadratic(f):
        """Returns ``True`` if ``f`` is quadratic in all its variables. """
        return all(sum(monom) <= 2 for monom in dmp_to_dict(f._rep, f.lev, f.dom).keys())

    @property
    def is_monomial(f):
        """Returns ``True`` if ``f`` is zero or has only one term. """
        return len(f.to_dict()) <= 1

    @property
    def is_homogeneous(f):
        """Returns ``True`` if ``f`` is a homogeneous polynomial. """
        return f.homogeneous_order() is not None

    @property
    def is_irreducible(f):
        """Returns ``True`` if ``f`` has no factors over its domain. """
        return dmp_irreducible_p(f._rep, f.lev, f.dom)

    @property
    def is_cyclotomic(f):
        """Returns ``True`` if ``f`` is a cyclotomic polynomial. """
        if not f.lev:
            return dup_cyclotomic_p(f._rep, f.dom)
        else:
            return False


class DUP_Flint(DMP):
    """Dense Multivariate Polynomials over `K`. """

    lev = 0

    __slots__ = ('_rep', 'dom', '_cls')

    def __reduce__(self):
        return self.__class__, (self.to_list(), self.dom, self.lev)

    @classmethod
    def _new(cls, rep, dom, lev):
        rep = cls._flint_poly(rep[::-1], dom, lev)
        return cls.from_rep(rep, dom)

    def to_list(f):
        """Convert ``f`` to a list representation with native coefficients. """
        return f._rep.coeffs()[::-1]

    @classmethod
    def _flint_poly(cls, rep, dom, lev):
        assert dom in _flint_domains
        assert lev == 0
        flint_cls = cls._get_flint_poly_cls(dom)
        return flint_cls(rep)

    @classmethod
    def _get_flint_poly_cls(cls, dom):
        if dom.is_ZZ:
            return flint.fmpz_poly
        elif dom.is_QQ:
            return flint.fmpq_poly
        else:
            raise RuntimeError("Domain %s is not supported with flint" % dom)

    @classmethod
    def from_rep(cls, rep, dom):
        """Create a DMP from the given representation. """

        if dom.is_ZZ:
            assert isinstance(rep, flint.fmpz_poly)
            _cls = flint.fmpz_poly
        elif dom.is_QQ:
            assert isinstance(rep, flint.fmpq_poly)
            _cls = flint.fmpq_poly
        else:
            raise RuntimeError("Domain %s is not supported with flint" % dom)

        obj = object.__new__(cls)
        obj.dom = dom
        obj._rep = rep
        obj._cls = _cls

        return obj

    def _strict_eq(f, g):
        if type(f) != type(g):
            return False
        return f.dom == g.dom and f._rep == g._rep

    def ground_new(f, coeff):
        """Construct a new ground instance of ``f``. """
        return f.from_rep(f._cls([coeff]), f.dom)

    def _one(f):
        return f.ground_new(f.dom.one)

    def unify(f, g):
        """Unify representations of two polynomials. """
        raise RuntimeError

    def to_DMP_Python(f):
        """Convert ``f`` to a Python native representation. """
        return DMP_Python._new(f.to_list(), f.dom, f.lev)

    def to_tuple(f):
        """Convert ``f`` to a tuple representation with native coefficients. """
        return tuple(f.to_list())

    def _convert(f, dom):
        """Convert the ground domain of ``f``. """
        if dom == QQ and f.dom == ZZ:
            return f.from_rep(flint.fmpq_poly(f._rep), dom)
        elif dom == ZZ and f.dom == QQ:
            # XXX: python-flint should provide a faster way to do this.
            return f.to_DMP_Python()._convert(dom).to_DUP_Flint()
        else:
            raise RuntimeError(f"DUP_Flint: Cannot convert {f.dom} to {dom}")

    def _slice(f, m, n):
        """Take a continuous subsequence of terms of ``f``. """
        coeffs = f._rep.coeffs()[m:n]
        return f.from_rep(f._cls(coeffs), f.dom)

    def _slice_lev(f, m, n, j):
        """Take a continuous subsequence of terms of ``f``. """
        # Only makes sense for multivariate polynomials
        raise NotImplementedError

    def _terms(f, order=None):
        """Returns all non-zero terms from ``f`` in lex order. """
        if order is None or order.alias == 'lex':
            terms = [ ((n,), c) for n, c in enumerate(f._rep.coeffs()) if c ]
            return terms[::-1]
        else:
            # XXX: InverseOrder (ilex) comes here. We could handle that case
            # efficiently by reversing the coefficients but it is not clear
            # how to test if the order is InverseOrder.
            #
            # Otherwise why would the order ever be different for univariate
            # polynomials?
            return f.to_DMP_Python()._terms(order=order)

    def _lift(f):
        """Convert algebraic coefficients to rationals. """
        # This is for algebraic number fields which DUP_Flint does not support
        raise NotImplementedError

    def deflate(f):
        """Reduce degree of `f` by mapping `x_i^m` to `y_i`. """
        # XXX: Check because otherwise this segfaults with python-flint:
        #
        #  >>> flint.fmpz_poly([]).deflation()
        #  Exception (fmpz_poly_deflate). Division by zero.
        #  Aborted (core dumped
        #
        if f.is_zero:
            return (1,), f
        g, n = f._rep.deflation()
        return (n,), f.from_rep(g, f.dom)

    def inject(f, front=False):
        """Inject ground domain generators into ``f``. """
        # Ground domain would need to be a poly ring
        raise NotImplementedError

    def eject(f, dom, front=False):
        """Eject selected generators into the ground domain. """
        # Only makes sense for multivariate polynomials
        raise NotImplementedError

    def _exclude(f):
        """Remove useless generators from ``f``. """
        # Only makes sense for multivariate polynomials
        raise NotImplementedError

    def _permute(f, P):
        """Returns a polynomial in `K[x_{P(1)}, ..., x_{P(n)}]`. """
        # Only makes sense for multivariate polynomials
        raise NotImplementedError

    def terms_gcd(f):
        """Remove GCD of terms from the polynomial ``f``. """
        # XXX: python-flint should have primitive, content, etc methods.
        J, F = f.to_DMP_Python().terms_gcd()
        return J, F.to_DUP_Flint()

    def _add_ground(f, c):
        """Add an element of the ground domain to ``f``. """
        return f.from_rep(f._rep + c, f.dom)

    def _sub_ground(f, c):
        """Subtract an element of the ground domain from ``f``. """
        return f.from_rep(f._rep - c, f.dom)

    def _mul_ground(f, c):
        """Multiply ``f`` by a an element of the ground domain. """
        return f.from_rep(f._rep * c, f.dom)

    def _quo_ground(f, c):
        """Quotient of ``f`` by a an element of the ground domain. """
        return f.from_rep(f._rep // c, f.dom)

    def _exquo_ground(f, c):
        """Exact quotient of ``f`` by a an element of the ground domain. """
        q, r = divmod(f._rep, c)
        if r:
            raise ExactQuotientFailed(f, c)
        return f.from_rep(q, f.dom)

    def abs(f):
        """Make all coefficients in ``f`` positive. """
        return f.to_DMP_Python().abs().to_DUP_Flint()

    def neg(f):
        """Negate all coefficients in ``f``. """
        return f.from_rep(-f._rep, f.dom)

    def _add(f, g):
        """Add two multivariate polynomials ``f`` and ``g``. """
        return f.from_rep(f._rep + g._rep, f.dom)

    def _sub(f, g):
        """Subtract two multivariate polynomials ``f`` and ``g``. """
        return f.from_rep(f._rep - g._rep, f.dom)

    def _mul(f, g):
        """Multiply two multivariate polynomials ``f`` and ``g``. """
        return f.from_rep(f._rep * g._rep, f.dom)

    def sqr(f):
        """Square a multivariate polynomial ``f``. """
        return f.from_rep(f._rep ** 2, f.dom)

    def _pow(f, n):
        """Raise ``f`` to a non-negative power ``n``. """
        return f.from_rep(f._rep ** n, f.dom)

    def _pdiv(f, g):
        """Polynomial pseudo-division of ``f`` and ``g``. """
        d = f.degree() - g.degree() + 1
        q, r = divmod(g.LC()**d * f._rep, g._rep)
        return f.from_rep(q, f.dom), f.from_rep(r, f.dom)

    def _prem(f, g):
        """Polynomial pseudo-remainder of ``f`` and ``g``. """
        d = f.degree() - g.degree() + 1
        q = (g.LC()**d * f._rep) % g._rep
        return f.from_rep(q, f.dom)

    def _pquo(f, g):
        """Polynomial pseudo-quotient of ``f`` and ``g``. """
        d = f.degree() - g.degree() + 1
        r = (g.LC()**d * f._rep) // g._rep
        return f.from_rep(r, f.dom)

    def _pexquo(f, g):
        """Polynomial exact pseudo-quotient of ``f`` and ``g``. """
        d = f.degree() - g.degree() + 1
        q, r = divmod(g.LC()**d * f._rep, g._rep)
        if r:
            raise ExactQuotientFailed(f, g)
        return f.from_rep(q, f.dom)

    def _div(f, g):
        """Polynomial division with remainder of ``f`` and ``g``. """
        if f.dom.is_Field:
            q, r = divmod(f._rep, g._rep)
            return f.from_rep(q, f.dom), f.from_rep(r, f.dom)
        else:
            # XXX: python-flint defines division in ZZ[x] differently
            q, r = f.to_DMP_Python()._div(g.to_DMP_Python())
            return q.to_DUP_Flint(), r.to_DUP_Flint()

    def _rem(f, g):
        """Computes polynomial remainder of ``f`` and ``g``. """
        return f.from_rep(f._rep % g._rep, f.dom)

    def _quo(f, g):
        """Computes polynomial quotient of ``f`` and ``g``. """
        return f.from_rep(f._rep // g._rep, f.dom)

    def _exquo(f, g):
        """Computes polynomial exact quotient of ``f`` and ``g``. """
        q, r = f._div(g)
        if r:
            raise ExactQuotientFailed(f, g)
        return q

    def _degree(f, j=0):
        """Returns the leading degree of ``f`` in ``x_j``. """
        d = f._rep.degree()
        if d == -1:
            d = ninf
        return d

    def degree_list(f):
        """Returns a list of degrees of ``f``. """
        return ( f._degree() ,)

    def total_degree(f):
        """Returns the total degree of ``f``. """
        return f._degree()

    def LC(f):
        """Returns the leading coefficient of ``f``. """
        return f._rep[f._rep.degree()]

    def TC(f):
        """Returns the trailing coefficient of ``f``. """
        return f._rep[0]

    def _nth(f, N):
        """Returns the ``n``-th coefficient of ``f``. """
        [n] = N
        return f._rep[n]

    def max_norm(f):
        """Returns maximum norm of ``f``. """
        return f.to_DMP_Python().max_norm()

    def l1_norm(f):
        """Returns l1 norm of ``f``. """
        return f.to_DMP_Python().l1_norm()

    def l2_norm_squared(f):
        """Return squared l2 norm of ``f``. """
        return f.to_DMP_Python().l2_norm_squared()

    def clear_denoms(f):
        """Clear denominators, but keep the ground domain. """
        denom = f._rep.denom()
        numer = f.from_rep(f._cls(f._rep.numer()), f.dom)
        return denom, numer

    def _integrate(f, m=1, j=0):
        """Computes the ``m``-th order indefinite integral of ``f`` in ``x_j``. """
        assert j == 0
        if f.dom.is_QQ:
            rep = f._rep
            for i in range(m):
                rep = rep.integral()
            return f.from_rep(rep, f.dom)
        else:
            return f.to_DMP_Python()._integrate(m=m, j=j).to_DUP_Flint()

    def _diff(f, m=1, j=0):
        """Computes the ``m``-th order derivative of ``f``. """
        assert j == 0
        rep = f._rep
        for i in range(m):
            rep = rep.derivative()
        return f.from_rep(rep, f.dom)

    def _eval(f, a):
        return f.to_DMP_Python()._eval(a)

    def _eval_lev(f, a, j):
        # Only makes sense for multivariate polynomials
        raise NotImplementedError

    def _half_gcdex(f, g):
        """Half extended Euclidean algorithm. """
        s, h = f.to_DMP_Python()._half_gcdex(g.to_DMP_Python())
        return s.to_DUP_Flint(), h.to_DUP_Flint()

    def _gcdex(f, g):
        """Extended Euclidean algorithm. """
        h, s, t = f._rep.xgcd(g._rep)
        return f.from_rep(s, f.dom), f.from_rep(t, f.dom), f.from_rep(h, f.dom)

    def _invert(f, g):
        """Invert ``f`` modulo ``g``, if possible. """
        if f.dom.is_QQ:
            gcd, F_inv, _ = f._rep.xgcd(g._rep)
            if gcd != 1:
                raise NotInvertible("zero divisor")
            return f.from_rep(F_inv, f.dom)
        else:
            return f.to_DMP_Python()._invert(g.to_DMP_Python()).to_DUP_Flint()

    def _revert(f, n):
        """Compute ``f**(-1)`` mod ``x**n``. """
        return f.to_DMP_Python()._revert(n).to_DUP_Flint()

    def _subresultants(f, g):
        """Computes subresultant PRS sequence of ``f`` and ``g``. """
        R = f.to_DMP_Python()._subresultants(g.to_DMP_Python())
        return [ g.to_DUP_Flint() for g in R ]

    def _resultant_includePRS(f, g):
        """Computes resultant of ``f`` and ``g`` via PRS. """
        res, R = f.to_DMP_Python()._resultant_includePRS(g.to_DMP_Python())
        return res, [ g.to_DUP_Flint() for g in R ]

    def _resultant(f, g):
        """Computes resultant of ``f`` and ``g``. """
        return f.to_DMP_Python()._resultant(g.to_DMP_Python())

    def discriminant(f):
        """Computes discriminant of ``f``. """
        return f.to_DMP_Python().discriminant()

    def _cofactors(f, g):
        """Returns GCD of ``f`` and ``g`` and their cofactors. """
        h = f.gcd(g)
        return h, f.exquo(h), g.exquo(h)

    def _gcd(f, g):
        """Returns polynomial GCD of ``f`` and ``g``. """
        return f.from_rep(f._rep.gcd(g._rep), f.dom)

    def _lcm(f, g):
        """Returns polynomial LCM of ``f`` and ``g``. """
        # XXX: python-flint should have a lcm method
        if not (f and g):
            return f.ground_new(f.dom.zero)

        l = f._mul(g)._exquo(f._gcd(g))

        if l.dom.is_Field:
            l = l.monic()
        elif l.LC() < 0:
            l = l.neg()

        return l

    def _cancel(f, g):
        """Cancel common factors in a rational function ``f/g``. """
        # Think carefully about how to handle denominators and coefficient
        # canonicalisation if more domains are permitted...
        assert f.dom == g.dom in (ZZ, QQ)

        if f.dom.is_QQ:
            cG, F = f.clear_denoms()
            cF, G = g.clear_denoms()
        else:
            cG, F = f.dom.one, f
            cF, G = g.dom.one, g

        cH = cF.gcd(cG)
        cF, cG = cF // cH, cG // cH

        H = F._gcd(G)
        F, G = F.exquo(H), G.exquo(H)

        f_neg = F.LC() < 0
        g_neg = G.LC() < 0

        if f_neg and g_neg:
            F, G = F.neg(), G.neg()
        elif f_neg:
            cF, F = -cF, F.neg()
        elif g_neg:
            cF, G = -cF, G.neg()

        return cF, cG, F, G

    def _cancel_include(f, g):
        """Cancel common factors in a rational function ``f/g``. """
        cF, cG, F, G = f._cancel(g)
        return F._mul_ground(cF), G._mul_ground(cG)

    def _trunc(f, p):
        """Reduce ``f`` modulo a constant ``p``. """
        return f.to_DMP_Python()._trunc(p).to_DUP_Flint()

    def monic(f):
        """Divides all coefficients by ``LC(f)``. """
        return f._exquo_ground(f.LC())

    def content(f):
        """Returns GCD of polynomial coefficients. """
        # XXX: python-flint should have a content method
        return f.to_DMP_Python().content()

    def primitive(f):
        """Returns content and a primitive form of ``f``. """
        cont = f.content()
        prim = f._exquo_ground(cont)
        return cont, prim

    def _compose(f, g):
        """Computes functional composition of ``f`` and ``g``. """
        return f.from_rep(f._rep(g._rep), f.dom)

    def _decompose(f):
        """Computes functional decomposition of ``f``. """
        return [ g.to_DUP_Flint() for g in f.to_DMP_Python()._decompose() ]

    def _shift(f, a):
        """Efficiently compute Taylor shift ``f(x + a)``. """
        x_plus_a = f._cls([a, f.dom.one])
        return f.from_rep(f._rep(x_plus_a), f.dom)

    def _transform(f, p, q):
        """Evaluate functional transformation ``q**n * f(p/q)``."""
        F, P, Q = f.to_DMP_Python(), p.to_DMP_Python(), q.to_DMP_Python()
        return F.transform(P, Q).to_DUP_Flint()

    def _sturm(f):
        """Computes the Sturm sequence of ``f``. """
        return [ g.to_DUP_Flint() for g in f.to_DMP_Python()._sturm() ]

    def _cauchy_upper_bound(f):
        """Computes the Cauchy upper bound on the roots of ``f``. """
        return f.to_DMP_Python()._cauchy_upper_bound()

    def _cauchy_lower_bound(f):
        """Computes the Cauchy lower bound on the nonzero roots of ``f``. """
        return f.to_DMP_Python()._cauchy_lower_bound()

    def _mignotte_sep_bound_squared(f):
        """Computes the squared Mignotte bound on root separations of ``f``. """
        return f.to_DMP_Python()._mignotte_sep_bound_squared()

    def _gff_list(f):
        """Computes greatest factorial factorization of ``f``. """
        F = f.to_DMP_Python()
        return [ (g.to_DUP_Flint(), k) for g, k in F.gff_list() ]

    def norm(f):
        """Computes ``Norm(f)``."""
        # This is for algebraic number fields which DUP_Flint does not support
        raise NotImplementedError

    def sqf_norm(f):
        """Computes square-free norm of ``f``. """
        # This is for algebraic number fields which DUP_Flint does not support
        raise NotImplementedError

    def sqf_part(f):
        """Computes square-free part of ``f``. """
        return f._exquo(f._gcd(f._diff()))

    def sqf_list(f, all=False):
        """Returns a list of square-free factors of ``f``. """
        coeff, factors = f.to_DMP_Python().sqf_list(all=all)
        return coeff, [ (g.to_DUP_Flint(), k) for g, k in factors ]

    def sqf_list_include(f, all=False):
        """Returns a list of square-free factors of ``f``. """
        factors = f.to_DMP_Python().sqf_list_include(all=all)
        return [ (g.to_DUP_Flint(), k) for g, k in factors ]

    def factor_list(f):
        """Returns a list of irreducible factors of ``f``. """

        if f.dom.is_ZZ:
            # python-flint matches polys here
            coeff, factors = f._rep.factor()
            factors = [ (f.from_rep(g, f.dom), k) for g, k in factors ]

        elif f.dom.is_QQ:
            # python-flint returns monic factors over QQ whereas polys returns
            # denominator free factors.
            coeff, factors = f._rep.factor()
            factors_monic = [ (f.from_rep(g, f.dom), k) for g, k in factors ]

            # Absorb the denominators into coeff
            factors = []
            for g, k in factors_monic:
                d, g = g.clear_denoms()
                coeff /= d**k
                factors.append((g, k))

        else:
            # Check carefully when adding more domains here...
            raise RuntimeError("Domain %s is not supported with flint" % f.dom)

        # We need to match the way that polys orders the factors
        factors = f._sort_factors(factors)

        return coeff, factors

    def factor_list_include(f):
        """Returns a list of irreducible factors of ``f``. """
        # XXX: factor_list_include seems to be broken in general:
        #
        #   >>> Poly(2*(x - 1)**3, x).factor_list_include()
        #   [(Poly(2*x - 2, x, domain='ZZ'), 3)]
        #
        # Let's not try to implement it here.
        factors = f.to_DMP_Python().factor_list_include()
        return [ (g.to_DUP_Flint(), k) for g, k in factors ]

    def _sort_factors(f, factors):
        """Sort a list of factors to canonical order. """
        # Convert the factors to lists and use _sort_factors from polys
        factors = [ (g.to_list(), k) for g, k in factors ]
        factors = _sort_factors(factors, multiple=True)
        to_dup_flint = lambda g: f.from_rep(f._cls(g[::-1]), f.dom)
        return [ (to_dup_flint(g), k) for g, k in factors ]

    def _isolate_real_roots(f, eps, inf, sup, fast):
        return f.to_DMP_Python()._isolate_real_roots(eps, inf, sup, fast)

    def _isolate_real_roots_sqf(f, eps, inf, sup, fast):
        return f.to_DMP_Python()._isolate_real_roots_sqf(eps, inf, sup, fast)

    def _isolate_all_roots(f, eps, inf, sup, fast):
        return f.to_DMP_Python()._isolate_all_roots(eps, inf, sup, fast)

    def _isolate_all_roots_sqf(f, eps, inf, sup, fast):
        return f.to_DMP_Python()._isolate_all_roots_sqf(eps, inf, sup, fast)

    def _refine_real_root(f, s, t, eps, steps, fast):
        return f.to_DMP_Python()._refine_real_root(s, t, eps, steps, fast)

    def count_real_roots(f, inf=None, sup=None):
        """Return the number of real roots of ``f`` in ``[inf, sup]``. """
        return f.to_DMP_Python().count_real_roots(inf=inf, sup=sup)

    def count_complex_roots(f, inf=None, sup=None):
        """Return the number of complex roots of ``f`` in ``[inf, sup]``. """
        return f.to_DMP_Python().count_complex_roots(inf=inf, sup=sup)

    @property
    def is_zero(f):
        """Returns ``True`` if ``f`` is a zero polynomial. """
        return not f._rep

    @property
    def is_one(f):
        """Returns ``True`` if ``f`` is a unit polynomial. """
        return f._rep == f.dom.one

    @property
    def is_ground(f):
        """Returns ``True`` if ``f`` is an element of the ground domain. """
        return f._rep.degree() <= 0

    @property
    def is_linear(f):
        """Returns ``True`` if ``f`` is linear in all its variables. """
        return f._rep.degree() <= 1

    @property
    def is_quadratic(f):
        """Returns ``True`` if ``f`` is quadratic in all its variables. """
        return f._rep.degree() <= 2

    @property
    def is_monomial(f):
        """Returns ``True`` if ``f`` is zero or has only one term. """
        return f.to_DMP_Python().is_monomial

    @property
    def is_monic(f):
        """Returns ``True`` if the leading coefficient of ``f`` is one. """
        return f.LC() == f.dom.one

    @property
    def is_primitive(f):
        """Returns ``True`` if the GCD of the coefficients of ``f`` is one. """
        return f.to_DMP_Python().is_primitive

    @property
    def is_homogeneous(f):
        """Returns ``True`` if ``f`` is a homogeneous polynomial. """
        return f.to_DMP_Python().is_homogeneous

    @property
    def is_sqf(f):
        """Returns ``True`` if ``f`` is a square-free polynomial. """
        return f.to_DMP_Python().is_sqf

    @property
    def is_irreducible(f):
        """Returns ``True`` if ``f`` has no factors over its domain. """
        return f.to_DMP_Python().is_irreducible

    @property
    def is_cyclotomic(f):
        """Returns ``True`` if ``f`` is a cyclotomic polynomial. """
        if f.dom.is_ZZ:
            return bool(f._rep.is_cyclotomic())
        else:
            return f.to_DMP_Python().is_cyclotomic


def init_normal_DMF(num, den, lev, dom):
    return DMF(dmp_normal(num, lev, dom),
               dmp_normal(den, lev, dom), dom, lev)


class DMF(PicklableWithSlots, CantSympify):
    """Dense Multivariate Fractions over `K`. """

    __slots__ = ('num', 'den', 'lev', 'dom')

    def __init__(self, rep, dom, lev=None):
        num, den, lev = self._parse(rep, dom, lev)
        num, den = dmp_cancel(num, den, lev, dom)

        self.num = num
        self.den = den
        self.lev = lev
        self.dom = dom

    @classmethod
    def new(cls, rep, dom, lev=None):
        num, den, lev = cls._parse(rep, dom, lev)

        obj = object.__new__(cls)

        obj.num = num
        obj.den = den
        obj.lev = lev
        obj.dom = dom

        return obj

    def ground_new(self, rep):
        return self.new(rep, self.dom, self.lev)

    @classmethod
    def _parse(cls, rep, dom, lev=None):
        if isinstance(rep, tuple):
            num, den = rep

            if lev is not None:
                if isinstance(num, dict):
                    num = dmp_from_dict(num, lev, dom)

                if isinstance(den, dict):
                    den = dmp_from_dict(den, lev, dom)
            else:
                num, num_lev = dmp_validate(num)
                den, den_lev = dmp_validate(den)

                if num_lev == den_lev:
                    lev = num_lev
                else:
                    raise ValueError('inconsistent number of levels')

            if dmp_zero_p(den, lev):
                raise ZeroDivisionError('fraction denominator')

            if dmp_zero_p(num, lev):
                den = dmp_one(lev, dom)
            else:
                if dmp_negative_p(den, lev, dom):
                    num = dmp_neg(num, lev, dom)
                    den = dmp_neg(den, lev, dom)
        else:
            num = rep

            if lev is not None:
                if isinstance(num, dict):
                    num = dmp_from_dict(num, lev, dom)
                elif not isinstance(num, list):
                    num = dmp_ground(dom.convert(num), lev)
            else:
                num, lev = dmp_validate(num)

            den = dmp_one(lev, dom)

        return num, den, lev

    def __repr__(f):
        return "%s((%s, %s), %s)" % (f.__class__.__name__, f.num, f.den, f.dom)

    def __hash__(f):
        return hash((f.__class__.__name__, dmp_to_tuple(f.num, f.lev),
            dmp_to_tuple(f.den, f.lev), f.lev, f.dom))

    def poly_unify(f, g):
        """Unify a multivariate fraction and a polynomial. """
        if not isinstance(g, DMP) or f.lev != g.lev:
            raise UnificationFailed("Cannot unify %s with %s" % (f, g))

        if f.dom == g.dom:
            return (f.lev, f.dom, f.per, (f.num, f.den), g._rep)
        else:
            lev, dom = f.lev, f.dom.unify(g.dom)

            F = (dmp_convert(f.num, lev, f.dom, dom),
                 dmp_convert(f.den, lev, f.dom, dom))

            G = dmp_convert(g._rep, lev, g.dom, dom)

            def per(num, den, cancel=True, kill=False, lev=lev):
                if kill:
                    if not lev:
                        return num/den
                    else:
                        lev = lev - 1

                if cancel:
                    num, den = dmp_cancel(num, den, lev, dom)

                return f.__class__.new((num, den), dom, lev)

            return lev, dom, per, F, G

    def frac_unify(f, g):
        """Unify representations of two multivariate fractions. """
        if not isinstance(g, DMF) or f.lev != g.lev:
            raise UnificationFailed("Cannot unify %s with %s" % (f, g))

        if f.dom == g.dom:
            return (f.lev, f.dom, f.per, (f.num, f.den),
                                         (g.num, g.den))
        else:
            lev, dom = f.lev, f.dom.unify(g.dom)

            F = (dmp_convert(f.num, lev, f.dom, dom),
                 dmp_convert(f.den, lev, f.dom, dom))

            G = (dmp_convert(g.num, lev, g.dom, dom),
                 dmp_convert(g.den, lev, g.dom, dom))

            def per(num, den, cancel=True, kill=False, lev=lev):
                if kill:
                    if not lev:
                        return num/den
                    else:
                        lev = lev - 1

                if cancel:
                    num, den = dmp_cancel(num, den, lev, dom)

                return f.__class__.new((num, den), dom, lev)

            return lev, dom, per, F, G

    def per(f, num, den, cancel=True, kill=False):
        """Create a DMF out of the given representation. """
        lev, dom = f.lev, f.dom

        if kill:
            if not lev:
                return num/den
            else:
                lev -= 1

        if cancel:
            num, den = dmp_cancel(num, den, lev, dom)

        return f.__class__.new((num, den), dom, lev)

    def half_per(f, rep, kill=False):
        """Create a DMP out of the given representation. """
        lev = f.lev

        if kill:
            if not lev:
                return rep
            else:
                lev -= 1

        return DMP(rep, f.dom, lev)

    @classmethod
    def zero(cls, lev, dom):
        return cls.new(0, dom, lev)

    @classmethod
    def one(cls, lev, dom):
        return cls.new(1, dom, lev)

    def numer(f):
        """Returns the numerator of ``f``. """
        return f.half_per(f.num)

    def denom(f):
        """Returns the denominator of ``f``. """
        return f.half_per(f.den)

    def cancel(f):
        """Remove common factors from ``f.num`` and ``f.den``. """
        return f.per(f.num, f.den)

    def neg(f):
        """Negate all coefficients in ``f``. """
        return f.per(dmp_neg(f.num, f.lev, f.dom), f.den, cancel=False)

    def add_ground(f, c):
        """Add an element of the ground domain to ``f``. """
        return f + f.ground_new(c)

    def add(f, g):
        """Add two multivariate fractions ``f`` and ``g``. """
        if isinstance(g, DMP):
            lev, dom, per, (F_num, F_den), G = f.poly_unify(g)
            num, den = dmp_add_mul(F_num, F_den, G, lev, dom), F_den
        else:
            lev, dom, per, F, G = f.frac_unify(g)
            (F_num, F_den), (G_num, G_den) = F, G

            num = dmp_add(dmp_mul(F_num, G_den, lev, dom),
                          dmp_mul(F_den, G_num, lev, dom), lev, dom)
            den = dmp_mul(F_den, G_den, lev, dom)

        return per(num, den)

    def sub(f, g):
        """Subtract two multivariate fractions ``f`` and ``g``. """
        if isinstance(g, DMP):
            lev, dom, per, (F_num, F_den), G = f.poly_unify(g)
            num, den = dmp_sub_mul(F_num, F_den, G, lev, dom), F_den
        else:
            lev, dom, per, F, G = f.frac_unify(g)
            (F_num, F_den), (G_num, G_den) = F, G

            num = dmp_sub(dmp_mul(F_num, G_den, lev, dom),
                          dmp_mul(F_den, G_num, lev, dom), lev, dom)
            den = dmp_mul(F_den, G_den, lev, dom)

        return per(num, den)

    def mul(f, g):
        """Multiply two multivariate fractions ``f`` and ``g``. """
        if isinstance(g, DMP):
            lev, dom, per, (F_num, F_den), G = f.poly_unify(g)
            num, den = dmp_mul(F_num, G, lev, dom), F_den
        else:
            lev, dom, per, F, G = f.frac_unify(g)
            (F_num, F_den), (G_num, G_den) = F, G

            num = dmp_mul(F_num, G_num, lev, dom)
            den = dmp_mul(F_den, G_den, lev, dom)

        return per(num, den)

    def pow(f, n):
        """Raise ``f`` to a non-negative power ``n``. """
        if isinstance(n, int):
            num, den = f.num, f.den
            if n < 0:
                num, den, n = den, num, -n
            return f.per(dmp_pow(num, n, f.lev, f.dom),
                         dmp_pow(den, n, f.lev, f.dom), cancel=False)
        else:
            raise TypeError("``int`` expected, got %s" % type(n))

    def quo(f, g):
        """Computes quotient of fractions ``f`` and ``g``. """
        if isinstance(g, DMP):
            lev, dom, per, (F_num, F_den), G = f.poly_unify(g)
            num, den = F_num, dmp_mul(F_den, G, lev, dom)
        else:
            lev, dom, per, F, G = f.frac_unify(g)
            (F_num, F_den), (G_num, G_den) = F, G

            num = dmp_mul(F_num, G_den, lev, dom)
            den = dmp_mul(F_den, G_num, lev, dom)

        return per(num, den)

    exquo = quo

    def invert(f, check=True):
        """Computes inverse of a fraction ``f``. """
        return f.per(f.den, f.num, cancel=False)

    @property
    def is_zero(f):
        """Returns ``True`` if ``f`` is a zero fraction. """
        return dmp_zero_p(f.num, f.lev)

    @property
    def is_one(f):
        """Returns ``True`` if ``f`` is a unit fraction. """
        return dmp_one_p(f.num, f.lev, f.dom) and \
            dmp_one_p(f.den, f.lev, f.dom)

    def __neg__(f):
        return f.neg()

    def __add__(f, g):
        if isinstance(g, (DMP, DMF)):
            return f.add(g)
        elif g in f.dom:
            return f.add_ground(f.dom.convert(g))

        try:
            return f.add(f.half_per(g))
        except (TypeError, CoercionFailed, NotImplementedError):
            return NotImplemented

    def __radd__(f, g):
        return f.__add__(g)

    def __sub__(f, g):
        if isinstance(g, (DMP, DMF)):
            return f.sub(g)

        try:
            return f.sub(f.half_per(g))
        except (TypeError, CoercionFailed, NotImplementedError):
            return NotImplemented

    def __rsub__(f, g):
        return (-f).__add__(g)

    def __mul__(f, g):
        if isinstance(g, (DMP, DMF)):
            return f.mul(g)

        try:
            return f.mul(f.half_per(g))
        except (TypeError, CoercionFailed, NotImplementedError):
            return NotImplemented

    def __rmul__(f, g):
        return f.__mul__(g)

    def __pow__(f, n):
        return f.pow(n)

    def __truediv__(f, g):
        if isinstance(g, (DMP, DMF)):
            return f.quo(g)

        try:
            return f.quo(f.half_per(g))
        except (TypeError, CoercionFailed, NotImplementedError):
            return NotImplemented

    def __rtruediv__(self, g):
        return self.invert(check=False)*g

    def __eq__(f, g):
        try:
            if isinstance(g, DMP):
                _, _, _, (F_num, F_den), G = f.poly_unify(g)

                if f.lev == g.lev:
                    return dmp_one_p(F_den, f.lev, f.dom) and F_num == G
            else:
                _, _, _, F, G = f.frac_unify(g)

                if f.lev == g.lev:
                    return F == G
        except UnificationFailed:
            pass

        return False

    def __ne__(f, g):
        try:
            if isinstance(g, DMP):
                _, _, _, (F_num, F_den), G = f.poly_unify(g)

                if f.lev == g.lev:
                    return not (dmp_one_p(F_den, f.lev, f.dom) and F_num == G)
            else:
                _, _, _, F, G = f.frac_unify(g)

                if f.lev == g.lev:
                    return F != G
        except UnificationFailed:
            pass

        return True

    def __lt__(f, g):
        _, _, _, F, G = f.frac_unify(g)
        return F < G

    def __le__(f, g):
        _, _, _, F, G = f.frac_unify(g)
        return F <= G

    def __gt__(f, g):
        _, _, _, F, G = f.frac_unify(g)
        return F > G

    def __ge__(f, g):
        _, _, _, F, G = f.frac_unify(g)
        return F >= G

    def __bool__(f):
        return not dmp_zero_p(f.num, f.lev)


def init_normal_ANP(rep, mod, dom):
    return ANP(dup_normal(rep, dom),
               dup_normal(mod, dom), dom)


class ANP(CantSympify):
    """Dense Algebraic Number Polynomials over a field. """

    __slots__ = ('_rep', '_mod', 'dom')

    def __new__(cls, rep, mod, dom):
        if isinstance(rep, DMP):
            pass
        elif type(rep) is dict: # don't use isinstance
            rep = DMP(dup_from_dict(rep, dom), dom, 0)
        else:
            if isinstance(rep, list):
                rep = [dom.convert(a) for a in rep]
            else:
                rep = [dom.convert(rep)]
            rep = DMP(dup_strip(rep), dom, 0)

        if isinstance(mod, DMP):
            pass
        elif isinstance(mod, dict):
            mod = DMP(dup_from_dict(mod, dom), dom, 0)
        else:
            mod = DMP(dup_strip(mod), dom, 0)

        return cls.new(rep, mod, dom)

    @classmethod
    def new(cls, rep, mod, dom):
        if not (rep.dom == mod.dom == dom):
            raise RuntimeError("Inconsistent domain")
        obj = super().__new__(cls)
        obj._rep = rep
        obj._mod = mod
        obj.dom = dom
        return obj

    # XXX: It should be possible to use __getnewargs__ rather than __reduce__
    # but it doesn't work for some reason. Probably this would be easier if
    # python-flint supported pickling for polynomial types.
    def __reduce__(self):
        return ANP, (self.rep, self.mod, self.dom)

    @property
    def rep(self):
        return self._rep.to_list()

    @property
    def mod(self):
        return self.mod_to_list()

    def to_DMP(self):
        return self._rep

    def mod_to_DMP(self):
        return self._mod

    def per(f, rep):
        return f.new(rep, f._mod, f.dom)

    def __repr__(f):
        return "%s(%s, %s, %s)" % (f.__class__.__name__, f._rep.to_list(), f._mod.to_list(), f.dom)

    def __hash__(f):
        return hash((f.__class__.__name__, f.to_tuple(), f._mod.to_tuple(), f.dom))

    def convert(f, dom):
        """Convert ``f`` to a ``ANP`` over a new domain. """
        if f.dom == dom:
            return f
        else:
            return f.new(f._rep.convert(dom), f._mod.convert(dom), dom)

    def unify(f, g):
        """Unify representations of two algebraic numbers. """

        # XXX: This unify method is not used any more because unify_ANP is used
        # instead.

        if not isinstance(g, ANP) or f.mod != g.mod:
            raise UnificationFailed("Cannot unify %s with %s" % (f, g))

        if f.dom == g.dom:
            return f.dom, f.per, f.rep, g.rep, f.mod
        else:
            dom = f.dom.unify(g.dom)

            F = dup_convert(f.rep, f.dom, dom)
            G = dup_convert(g.rep, g.dom, dom)

            if dom != f.dom and dom != g.dom:
                mod = dup_convert(f.mod, f.dom, dom)
            else:
                if dom == f.dom:
                    mod = f.mod
                else:
                    mod = g.mod

            per = lambda rep: ANP(rep, mod, dom)

        return dom, per, F, G, mod

    def unify_ANP(f, g):
        """Unify and return ``DMP`` instances of ``f`` and ``g``. """
        if not isinstance(g, ANP) or f._mod != g._mod:
            raise UnificationFailed("Cannot unify %s with %s" % (f, g))

        # The domain is almost always QQ but there are some tests involving ZZ
        if f.dom != g.dom:
            dom = f.dom.unify(g.dom)
            f = f.convert(dom)
            g = g.convert(dom)

        return f._rep, g._rep, f._mod, f.dom

    @classmethod
    def zero(cls, mod, dom):
        return ANP(0, mod, dom)

    @classmethod
    def one(cls, mod, dom):
        return ANP(1, mod, dom)

    def to_dict(f):
        """Convert ``f`` to a dict representation with native coefficients. """
        return f._rep.to_dict()

    def to_sympy_dict(f):
        """Convert ``f`` to a dict representation with SymPy coefficients. """
        rep = dmp_to_dict(f.rep, 0, f.dom)

        for k, v in rep.items():
            rep[k] = f.dom.to_sympy(v)

        return rep

    def to_list(f):
        """Convert ``f`` to a list representation with native coefficients. """
        return f._rep.to_list()

    def mod_to_list(f):
        """Return ``f.mod`` as a list with native coefficients. """
        return f._mod.to_list()

    def to_sympy_list(f):
        """Convert ``f`` to a list representation with SymPy coefficients. """
        return [ f.dom.to_sympy(c) for c in f.to_list() ]

    def to_tuple(f):
        """
        Convert ``f`` to a tuple representation with native coefficients.

        This is needed for hashing.
        """
        return f._rep.to_tuple()

    @classmethod
    def from_list(cls, rep, mod, dom):
        return ANP(dup_strip(list(map(dom.convert, rep))), mod, dom)

    def add_ground(f, c):
        """Add an element of the ground domain to ``f``. """
        return f.per(f._rep.add_ground(c))

    def sub_ground(f, c):
        """Subtract an element of the ground domain from ``f``. """
        return f.per(f._rep.sub_ground(c))

    def mul_ground(f, c):
        """Multiply ``f`` by an element of the ground domain. """
        return f.per(f._rep.mul_ground(c))

    def quo_ground(f, c):
        """Quotient of ``f`` by an element of the ground domain. """
        return f.per(f._rep.quo_ground(c))

    def neg(f):
        return f.per(f._rep.neg())

    def add(f, g):
        F, G, mod, dom = f.unify_ANP(g)
        return f.new(F.add(G), mod, dom)

    def sub(f, g):
        F, G, mod, dom = f.unify_ANP(g)
        return f.new(F.sub(G), mod, dom)

    def mul(f, g):
        F, G, mod, dom = f.unify_ANP(g)
        return f.new(F.mul(G).rem(mod), mod, dom)

    def pow(f, n):
        """Raise ``f`` to a non-negative power ``n``. """
        if not isinstance(n, int):
            raise TypeError("``int`` expected, got %s" % type(n))

        mod = f._mod
        F = f._rep

        if n < 0:
            F, n = F.invert(mod), -n

        # XXX: Need a pow_mod method for DMP
        return f.new(F.pow(n).rem(f._mod), mod, f.dom)

    def exquo(f, g):
        F, G, mod, dom = f.unify_ANP(g)
        return f.new(F.mul(G.invert(mod)).rem(mod), mod, dom)

    def div(f, g):
        return f.exquo(g), f.zero(f._mod, f.dom)

    def quo(f, g):
        return f.exquo(g)

    def rem(f, g):
        F, G, mod, dom = f.unify_ANP(g)
        s, h = F.half_gcdex(G)

        if h.is_one:
            return f.zero(mod, dom)
        else:
            raise NotInvertible("zero divisor")

    def LC(f):
        """Returns the leading coefficient of ``f``. """
        return f._rep.LC()

    def TC(f):
        """Returns the trailing coefficient of ``f``. """
        return f._rep.TC()

    @property
    def is_zero(f):
        """Returns ``True`` if ``f`` is a zero algebraic number. """
        return f._rep.is_zero

    @property
    def is_one(f):
        """Returns ``True`` if ``f`` is a unit algebraic number. """
        return f._rep.is_one

    @property
    def is_ground(f):
        """Returns ``True`` if ``f`` is an element of the ground domain. """
        return f._rep.is_ground

    def __pos__(f):
        return f

    def __neg__(f):
        return f.neg()

    def __add__(f, g):
        if isinstance(g, ANP):
            return f.add(g)
        try:
            g = f.dom.convert(g)
        except CoercionFailed:
            return NotImplemented
        else:
            return f.add_ground(g)

    def __radd__(f, g):
        return f.__add__(g)

    def __sub__(f, g):
        if isinstance(g, ANP):
            return f.sub(g)
        try:
            g = f.dom.convert(g)
        except CoercionFailed:
            return NotImplemented
        else:
            return f.sub_ground(g)

    def __rsub__(f, g):
        return (-f).__add__(g)

    def __mul__(f, g):
        if isinstance(g, ANP):
            return f.mul(g)
        try:
            g = f.dom.convert(g)
        except CoercionFailed:
            return NotImplemented
        else:
            return f.mul_ground(g)

    def __rmul__(f, g):
        return f.__mul__(g)

    def __pow__(f, n):
        return f.pow(n)

    def __divmod__(f, g):
        return f.div(g)

    def __mod__(f, g):
        return f.rem(g)

    def __truediv__(f, g):
        if isinstance(g, ANP):
            return f.quo(g)
        try:
            g = f.dom.convert(g)
        except CoercionFailed:
            return NotImplemented
        else:
            return f.quo_ground(g)

    def __eq__(f, g):
        try:
            F, G, _, _ = f.unify_ANP(g)
        except UnificationFailed:
            return NotImplemented
        return F == G

    def __ne__(f, g):
        try:
            F, G, _, _ = f.unify_ANP(g)
        except UnificationFailed:
            return NotImplemented
        return F != G

    def __lt__(f, g):
        F, G, _, _ = f.unify_ANP(g)
        return F < G

    def __le__(f, g):
        F, G, _, _ = f.unify_ANP(g)
        return F <= G

    def __gt__(f, g):
        F, G, _, _ = f.unify_ANP(g)
        return F > G

    def __ge__(f, g):
        F, G, _, _ = f.unify_ANP(g)
        return F >= G

    def __bool__(f):
        return bool(f._rep)