Spaces:
Running
Running
"""Tests on algebraic numbers. """ | |
from sympy.core.containers import Tuple | |
from sympy.core.numbers import (AlgebraicNumber, I, Rational) | |
from sympy.core.singleton import S | |
from sympy.core.symbol import Symbol | |
from sympy.functions.elementary.miscellaneous import sqrt | |
from sympy.polys.polytools import Poly | |
from sympy.polys.numberfields.subfield import to_number_field | |
from sympy.polys.polyclasses import DMP | |
from sympy.polys.domains import QQ | |
from sympy.polys.rootoftools import CRootOf | |
from sympy.abc import x, y | |
def test_AlgebraicNumber(): | |
minpoly, root = x**2 - 2, sqrt(2) | |
a = AlgebraicNumber(root, gen=x) | |
assert a.rep == DMP([QQ(1), QQ(0)], QQ) | |
assert a.root == root | |
assert a.alias is None | |
assert a.minpoly == minpoly | |
assert a.is_number | |
assert a.is_aliased is False | |
assert a.coeffs() == [S.One, S.Zero] | |
assert a.native_coeffs() == [QQ(1), QQ(0)] | |
a = AlgebraicNumber(root, gen=x, alias='y') | |
assert a.rep == DMP([QQ(1), QQ(0)], QQ) | |
assert a.root == root | |
assert a.alias == Symbol('y') | |
assert a.minpoly == minpoly | |
assert a.is_number | |
assert a.is_aliased is True | |
a = AlgebraicNumber(root, gen=x, alias=Symbol('y')) | |
assert a.rep == DMP([QQ(1), QQ(0)], QQ) | |
assert a.root == root | |
assert a.alias == Symbol('y') | |
assert a.minpoly == minpoly | |
assert a.is_number | |
assert a.is_aliased is True | |
assert AlgebraicNumber(sqrt(2), []).rep == DMP([], QQ) | |
assert AlgebraicNumber(sqrt(2), ()).rep == DMP([], QQ) | |
assert AlgebraicNumber(sqrt(2), (0, 0)).rep == DMP([], QQ) | |
assert AlgebraicNumber(sqrt(2), [8]).rep == DMP([QQ(8)], QQ) | |
assert AlgebraicNumber(sqrt(2), [Rational(8, 3)]).rep == DMP([QQ(8, 3)], QQ) | |
assert AlgebraicNumber(sqrt(2), [7, 3]).rep == DMP([QQ(7), QQ(3)], QQ) | |
assert AlgebraicNumber( | |
sqrt(2), [Rational(7, 9), Rational(3, 2)]).rep == DMP([QQ(7, 9), QQ(3, 2)], QQ) | |
assert AlgebraicNumber(sqrt(2), [1, 2, 3]).rep == DMP([QQ(2), QQ(5)], QQ) | |
a = AlgebraicNumber(AlgebraicNumber(root, gen=x), [1, 2]) | |
assert a.rep == DMP([QQ(1), QQ(2)], QQ) | |
assert a.root == root | |
assert a.alias is None | |
assert a.minpoly == minpoly | |
assert a.is_number | |
assert a.is_aliased is False | |
assert a.coeffs() == [S.One, S(2)] | |
assert a.native_coeffs() == [QQ(1), QQ(2)] | |
a = AlgebraicNumber((minpoly, root), [1, 2]) | |
assert a.rep == DMP([QQ(1), QQ(2)], QQ) | |
assert a.root == root | |
assert a.alias is None | |
assert a.minpoly == minpoly | |
assert a.is_number | |
assert a.is_aliased is False | |
a = AlgebraicNumber((Poly(minpoly), root), [1, 2]) | |
assert a.rep == DMP([QQ(1), QQ(2)], QQ) | |
assert a.root == root | |
assert a.alias is None | |
assert a.minpoly == minpoly | |
assert a.is_number | |
assert a.is_aliased is False | |
assert AlgebraicNumber( sqrt(3)).rep == DMP([ QQ(1), QQ(0)], QQ) | |
assert AlgebraicNumber(-sqrt(3)).rep == DMP([ QQ(1), QQ(0)], QQ) | |
a = AlgebraicNumber(sqrt(2)) | |
b = AlgebraicNumber(sqrt(2)) | |
assert a == b | |
c = AlgebraicNumber(sqrt(2), gen=x) | |
assert a == b | |
assert a == c | |
a = AlgebraicNumber(sqrt(2), [1, 2]) | |
b = AlgebraicNumber(sqrt(2), [1, 3]) | |
assert a != b and a != sqrt(2) + 3 | |
assert (a == x) is False and (a != x) is True | |
a = AlgebraicNumber(sqrt(2), [1, 0]) | |
b = AlgebraicNumber(sqrt(2), [1, 0], alias=y) | |
assert a.as_poly(x) == Poly(x, domain='QQ') | |
assert b.as_poly() == Poly(y, domain='QQ') | |
assert a.as_expr() == sqrt(2) | |
assert a.as_expr(x) == x | |
assert b.as_expr() == sqrt(2) | |
assert b.as_expr(x) == x | |
a = AlgebraicNumber(sqrt(2), [2, 3]) | |
b = AlgebraicNumber(sqrt(2), [2, 3], alias=y) | |
p = a.as_poly() | |
assert p == Poly(2*p.gen + 3) | |
assert a.as_poly(x) == Poly(2*x + 3, domain='QQ') | |
assert b.as_poly() == Poly(2*y + 3, domain='QQ') | |
assert a.as_expr() == 2*sqrt(2) + 3 | |
assert a.as_expr(x) == 2*x + 3 | |
assert b.as_expr() == 2*sqrt(2) + 3 | |
assert b.as_expr(x) == 2*x + 3 | |
a = AlgebraicNumber(sqrt(2)) | |
b = to_number_field(sqrt(2)) | |
assert a.args == b.args == (sqrt(2), Tuple(1, 0)) | |
b = AlgebraicNumber(sqrt(2), alias='alpha') | |
assert b.args == (sqrt(2), Tuple(1, 0), Symbol('alpha')) | |
a = AlgebraicNumber(sqrt(2), [1, 2, 3]) | |
assert a.args == (sqrt(2), Tuple(1, 2, 3)) | |
a = AlgebraicNumber(sqrt(2), [1, 2], "alpha") | |
b = AlgebraicNumber(a) | |
c = AlgebraicNumber(a, alias="gamma") | |
assert a == b | |
assert c.alias.name == "gamma" | |
a = AlgebraicNumber(sqrt(2) + sqrt(3), [S(1)/2, 0, S(-9)/2, 0]) | |
b = AlgebraicNumber(a, [1, 0, 0]) | |
assert b.root == a.root | |
assert a.to_root() == sqrt(2) | |
assert b.to_root() == 2 | |
a = AlgebraicNumber(2) | |
assert a.is_primitive_element is True | |
def test_to_algebraic_integer(): | |
a = AlgebraicNumber(sqrt(3), gen=x).to_algebraic_integer() | |
assert a.minpoly == x**2 - 3 | |
assert a.root == sqrt(3) | |
assert a.rep == DMP([QQ(1), QQ(0)], QQ) | |
a = AlgebraicNumber(2*sqrt(3), gen=x).to_algebraic_integer() | |
assert a.minpoly == x**2 - 12 | |
assert a.root == 2*sqrt(3) | |
assert a.rep == DMP([QQ(1), QQ(0)], QQ) | |
a = AlgebraicNumber(sqrt(3)/2, gen=x).to_algebraic_integer() | |
assert a.minpoly == x**2 - 12 | |
assert a.root == 2*sqrt(3) | |
assert a.rep == DMP([QQ(1), QQ(0)], QQ) | |
a = AlgebraicNumber(sqrt(3)/2, [Rational(7, 19), 3], gen=x).to_algebraic_integer() | |
assert a.minpoly == x**2 - 12 | |
assert a.root == 2*sqrt(3) | |
assert a.rep == DMP([QQ(7, 19), QQ(3)], QQ) | |
def test_AlgebraicNumber_to_root(): | |
assert AlgebraicNumber(sqrt(2)).to_root() == sqrt(2) | |
zeta5_squared = AlgebraicNumber(CRootOf(x**5 - 1, 4), coeffs=[1, 0, 0]) | |
assert zeta5_squared.to_root() == CRootOf(x**4 + x**3 + x**2 + x + 1, 1) | |
zeta3_squared = AlgebraicNumber(CRootOf(x**3 - 1, 2), coeffs=[1, 0, 0]) | |
assert zeta3_squared.to_root() == -S(1)/2 - sqrt(3)*I/2 | |
assert zeta3_squared.to_root(radicals=False) == CRootOf(x**2 + x + 1, 0) | |