File size: 5,988 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
"""Tests on algebraic numbers. """

from sympy.core.containers import Tuple
from sympy.core.numbers import (AlgebraicNumber, I, Rational)
from sympy.core.singleton import S
from sympy.core.symbol import Symbol
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.polys.polytools import Poly
from sympy.polys.numberfields.subfield import to_number_field
from sympy.polys.polyclasses import DMP
from sympy.polys.domains import QQ
from sympy.polys.rootoftools import CRootOf
from sympy.abc import x, y


def test_AlgebraicNumber():
    minpoly, root = x**2 - 2, sqrt(2)

    a = AlgebraicNumber(root, gen=x)

    assert a.rep == DMP([QQ(1), QQ(0)], QQ)
    assert a.root == root
    assert a.alias is None
    assert a.minpoly == minpoly
    assert a.is_number

    assert a.is_aliased is False

    assert a.coeffs() == [S.One, S.Zero]
    assert a.native_coeffs() == [QQ(1), QQ(0)]

    a = AlgebraicNumber(root, gen=x, alias='y')

    assert a.rep == DMP([QQ(1), QQ(0)], QQ)
    assert a.root == root
    assert a.alias == Symbol('y')
    assert a.minpoly == minpoly
    assert a.is_number

    assert a.is_aliased is True

    a = AlgebraicNumber(root, gen=x, alias=Symbol('y'))

    assert a.rep == DMP([QQ(1), QQ(0)], QQ)
    assert a.root == root
    assert a.alias == Symbol('y')
    assert a.minpoly == minpoly
    assert a.is_number

    assert a.is_aliased is True

    assert AlgebraicNumber(sqrt(2), []).rep == DMP([], QQ)
    assert AlgebraicNumber(sqrt(2), ()).rep == DMP([], QQ)
    assert AlgebraicNumber(sqrt(2), (0, 0)).rep == DMP([], QQ)

    assert AlgebraicNumber(sqrt(2), [8]).rep == DMP([QQ(8)], QQ)
    assert AlgebraicNumber(sqrt(2), [Rational(8, 3)]).rep == DMP([QQ(8, 3)], QQ)

    assert AlgebraicNumber(sqrt(2), [7, 3]).rep == DMP([QQ(7), QQ(3)], QQ)
    assert AlgebraicNumber(
        sqrt(2), [Rational(7, 9), Rational(3, 2)]).rep == DMP([QQ(7, 9), QQ(3, 2)], QQ)

    assert AlgebraicNumber(sqrt(2), [1, 2, 3]).rep == DMP([QQ(2), QQ(5)], QQ)

    a = AlgebraicNumber(AlgebraicNumber(root, gen=x), [1, 2])

    assert a.rep == DMP([QQ(1), QQ(2)], QQ)
    assert a.root == root
    assert a.alias is None
    assert a.minpoly == minpoly
    assert a.is_number

    assert a.is_aliased is False

    assert a.coeffs() == [S.One, S(2)]
    assert a.native_coeffs() == [QQ(1), QQ(2)]

    a = AlgebraicNumber((minpoly, root), [1, 2])

    assert a.rep == DMP([QQ(1), QQ(2)], QQ)
    assert a.root == root
    assert a.alias is None
    assert a.minpoly == minpoly
    assert a.is_number

    assert a.is_aliased is False

    a = AlgebraicNumber((Poly(minpoly), root), [1, 2])

    assert a.rep == DMP([QQ(1), QQ(2)], QQ)
    assert a.root == root
    assert a.alias is None
    assert a.minpoly == minpoly
    assert a.is_number

    assert a.is_aliased is False

    assert AlgebraicNumber( sqrt(3)).rep == DMP([ QQ(1), QQ(0)], QQ)
    assert AlgebraicNumber(-sqrt(3)).rep == DMP([ QQ(1), QQ(0)], QQ)

    a = AlgebraicNumber(sqrt(2))
    b = AlgebraicNumber(sqrt(2))

    assert a == b

    c = AlgebraicNumber(sqrt(2), gen=x)

    assert a == b
    assert a == c

    a = AlgebraicNumber(sqrt(2), [1, 2])
    b = AlgebraicNumber(sqrt(2), [1, 3])

    assert a != b and a != sqrt(2) + 3

    assert (a == x) is False and (a != x) is True

    a = AlgebraicNumber(sqrt(2), [1, 0])
    b = AlgebraicNumber(sqrt(2), [1, 0], alias=y)

    assert a.as_poly(x) == Poly(x, domain='QQ')
    assert b.as_poly() == Poly(y, domain='QQ')

    assert a.as_expr() == sqrt(2)
    assert a.as_expr(x) == x
    assert b.as_expr() == sqrt(2)
    assert b.as_expr(x) == x

    a = AlgebraicNumber(sqrt(2), [2, 3])
    b = AlgebraicNumber(sqrt(2), [2, 3], alias=y)

    p = a.as_poly()

    assert p == Poly(2*p.gen + 3)

    assert a.as_poly(x) == Poly(2*x + 3, domain='QQ')
    assert b.as_poly() == Poly(2*y + 3, domain='QQ')

    assert a.as_expr() == 2*sqrt(2) + 3
    assert a.as_expr(x) == 2*x + 3
    assert b.as_expr() == 2*sqrt(2) + 3
    assert b.as_expr(x) == 2*x + 3

    a = AlgebraicNumber(sqrt(2))
    b = to_number_field(sqrt(2))
    assert a.args == b.args == (sqrt(2), Tuple(1, 0))
    b = AlgebraicNumber(sqrt(2), alias='alpha')
    assert b.args == (sqrt(2), Tuple(1, 0), Symbol('alpha'))

    a = AlgebraicNumber(sqrt(2), [1, 2, 3])
    assert a.args == (sqrt(2), Tuple(1, 2, 3))

    a = AlgebraicNumber(sqrt(2), [1, 2], "alpha")
    b = AlgebraicNumber(a)
    c = AlgebraicNumber(a, alias="gamma")
    assert a == b
    assert c.alias.name == "gamma"

    a = AlgebraicNumber(sqrt(2) + sqrt(3), [S(1)/2, 0, S(-9)/2, 0])
    b = AlgebraicNumber(a, [1, 0, 0])
    assert b.root == a.root
    assert a.to_root() == sqrt(2)
    assert b.to_root() == 2

    a = AlgebraicNumber(2)
    assert a.is_primitive_element is True


def test_to_algebraic_integer():
    a = AlgebraicNumber(sqrt(3), gen=x).to_algebraic_integer()

    assert a.minpoly == x**2 - 3
    assert a.root == sqrt(3)
    assert a.rep == DMP([QQ(1), QQ(0)], QQ)

    a = AlgebraicNumber(2*sqrt(3), gen=x).to_algebraic_integer()
    assert a.minpoly == x**2 - 12
    assert a.root == 2*sqrt(3)
    assert a.rep == DMP([QQ(1), QQ(0)], QQ)

    a = AlgebraicNumber(sqrt(3)/2, gen=x).to_algebraic_integer()

    assert a.minpoly == x**2 - 12
    assert a.root == 2*sqrt(3)
    assert a.rep == DMP([QQ(1), QQ(0)], QQ)

    a = AlgebraicNumber(sqrt(3)/2, [Rational(7, 19), 3], gen=x).to_algebraic_integer()

    assert a.minpoly == x**2 - 12
    assert a.root == 2*sqrt(3)
    assert a.rep == DMP([QQ(7, 19), QQ(3)], QQ)


def test_AlgebraicNumber_to_root():
    assert AlgebraicNumber(sqrt(2)).to_root() == sqrt(2)

    zeta5_squared = AlgebraicNumber(CRootOf(x**5 - 1, 4), coeffs=[1, 0, 0])
    assert zeta5_squared.to_root() == CRootOf(x**4 + x**3 + x**2 + x + 1, 1)

    zeta3_squared = AlgebraicNumber(CRootOf(x**3 - 1, 2), coeffs=[1, 0, 0])
    assert zeta3_squared.to_root() == -S(1)/2 - sqrt(3)*I/2
    assert zeta3_squared.to_root(radicals=False) == CRootOf(x**2 + x + 1, 0)