Spaces:
Running
Running
from sympy.abc import x, zeta | |
from sympy.polys import Poly, cyclotomic_poly | |
from sympy.polys.domains import FF, QQ, ZZ | |
from sympy.polys.matrices import DomainMatrix, DM | |
from sympy.polys.numberfields.exceptions import ( | |
ClosureFailure, MissingUnityError, StructureError | |
) | |
from sympy.polys.numberfields.modules import ( | |
Module, ModuleElement, ModuleEndomorphism, PowerBasis, PowerBasisElement, | |
find_min_poly, is_sq_maxrank_HNF, make_mod_elt, to_col, | |
) | |
from sympy.polys.numberfields.utilities import is_int | |
from sympy.polys.polyerrors import UnificationFailed | |
from sympy.testing.pytest import raises | |
def test_to_col(): | |
c = [1, 2, 3, 4] | |
m = to_col(c) | |
assert m.domain.is_ZZ | |
assert m.shape == (4, 1) | |
assert m.flat() == c | |
def test_Module_NotImplemented(): | |
M = Module() | |
raises(NotImplementedError, lambda: M.n) | |
raises(NotImplementedError, lambda: M.mult_tab()) | |
raises(NotImplementedError, lambda: M.represent(None)) | |
raises(NotImplementedError, lambda: M.starts_with_unity()) | |
raises(NotImplementedError, lambda: M.element_from_rational(QQ(2, 3))) | |
def test_Module_ancestors(): | |
T = Poly(cyclotomic_poly(5, x)) | |
A = PowerBasis(T) | |
B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ)) | |
C = B.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ)) | |
D = B.submodule_from_matrix(5 * DomainMatrix.eye(4, ZZ)) | |
assert C.ancestors(include_self=True) == [A, B, C] | |
assert D.ancestors(include_self=True) == [A, B, D] | |
assert C.power_basis_ancestor() == A | |
assert C.nearest_common_ancestor(D) == B | |
M = Module() | |
assert M.power_basis_ancestor() is None | |
def test_Module_compat_col(): | |
T = Poly(cyclotomic_poly(5, x)) | |
A = PowerBasis(T) | |
col = to_col([1, 2, 3, 4]) | |
row = col.transpose() | |
assert A.is_compat_col(col) is True | |
assert A.is_compat_col(row) is False | |
assert A.is_compat_col(1) is False | |
assert A.is_compat_col(DomainMatrix.eye(3, ZZ)[:, 0]) is False | |
assert A.is_compat_col(DomainMatrix.eye(4, QQ)[:, 0]) is False | |
assert A.is_compat_col(DomainMatrix.eye(4, ZZ)[:, 0]) is True | |
def test_Module_call(): | |
T = Poly(cyclotomic_poly(5, x)) | |
B = PowerBasis(T) | |
assert B(0).col.flat() == [1, 0, 0, 0] | |
assert B(1).col.flat() == [0, 1, 0, 0] | |
col = DomainMatrix.eye(4, ZZ)[:, 2] | |
assert B(col).col == col | |
raises(ValueError, lambda: B(-1)) | |
def test_Module_starts_with_unity(): | |
T = Poly(cyclotomic_poly(5, x)) | |
A = PowerBasis(T) | |
B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ)) | |
assert A.starts_with_unity() is True | |
assert B.starts_with_unity() is False | |
def test_Module_basis_elements(): | |
T = Poly(cyclotomic_poly(5, x)) | |
A = PowerBasis(T) | |
B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ)) | |
basis = B.basis_elements() | |
bp = B.basis_element_pullbacks() | |
for i, (e, p) in enumerate(zip(basis, bp)): | |
c = [0] * 4 | |
assert e.module == B | |
assert p.module == A | |
c[i] = 1 | |
assert e == B(to_col(c)) | |
c[i] = 2 | |
assert p == A(to_col(c)) | |
def test_Module_zero(): | |
T = Poly(cyclotomic_poly(5, x)) | |
A = PowerBasis(T) | |
B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ)) | |
assert A.zero().col.flat() == [0, 0, 0, 0] | |
assert A.zero().module == A | |
assert B.zero().col.flat() == [0, 0, 0, 0] | |
assert B.zero().module == B | |
def test_Module_one(): | |
T = Poly(cyclotomic_poly(5, x)) | |
A = PowerBasis(T) | |
B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ)) | |
assert A.one().col.flat() == [1, 0, 0, 0] | |
assert A.one().module == A | |
assert B.one().col.flat() == [1, 0, 0, 0] | |
assert B.one().module == A | |
def test_Module_element_from_rational(): | |
T = Poly(cyclotomic_poly(5, x)) | |
A = PowerBasis(T) | |
B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ)) | |
rA = A.element_from_rational(QQ(22, 7)) | |
rB = B.element_from_rational(QQ(22, 7)) | |
assert rA.coeffs == [22, 0, 0, 0] | |
assert rA.denom == 7 | |
assert rA.module == A | |
assert rB.coeffs == [22, 0, 0, 0] | |
assert rB.denom == 7 | |
assert rB.module == A | |
def test_Module_submodule_from_gens(): | |
T = Poly(cyclotomic_poly(5, x)) | |
A = PowerBasis(T) | |
gens = [2*A(0), 2*A(1), 6*A(0), 6*A(1)] | |
B = A.submodule_from_gens(gens) | |
# Because the 3rd and 4th generators do not add anything new, we expect | |
# the cols of the matrix of B to just reproduce the first two gens: | |
M = gens[0].column().hstack(gens[1].column()) | |
assert B.matrix == M | |
# At least one generator must be provided: | |
raises(ValueError, lambda: A.submodule_from_gens([])) | |
# All generators must belong to A: | |
raises(ValueError, lambda: A.submodule_from_gens([3*A(0), B(0)])) | |
def test_Module_submodule_from_matrix(): | |
T = Poly(cyclotomic_poly(5, x)) | |
A = PowerBasis(T) | |
B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ)) | |
e = B(to_col([1, 2, 3, 4])) | |
f = e.to_parent() | |
assert f.col.flat() == [2, 4, 6, 8] | |
# Matrix must be over ZZ: | |
raises(ValueError, lambda: A.submodule_from_matrix(DomainMatrix.eye(4, QQ))) | |
# Number of rows of matrix must equal number of generators of module A: | |
raises(ValueError, lambda: A.submodule_from_matrix(2 * DomainMatrix.eye(5, ZZ))) | |
def test_Module_whole_submodule(): | |
T = Poly(cyclotomic_poly(5, x)) | |
A = PowerBasis(T) | |
B = A.whole_submodule() | |
e = B(to_col([1, 2, 3, 4])) | |
f = e.to_parent() | |
assert f.col.flat() == [1, 2, 3, 4] | |
e0, e1, e2, e3 = B(0), B(1), B(2), B(3) | |
assert e2 * e3 == e0 | |
assert e3 ** 2 == e1 | |
def test_PowerBasis_repr(): | |
T = Poly(cyclotomic_poly(5, x)) | |
A = PowerBasis(T) | |
assert repr(A) == 'PowerBasis(x**4 + x**3 + x**2 + x + 1)' | |
def test_PowerBasis_eq(): | |
T = Poly(cyclotomic_poly(5, x)) | |
A = PowerBasis(T) | |
B = PowerBasis(T) | |
assert A == B | |
def test_PowerBasis_mult_tab(): | |
T = Poly(cyclotomic_poly(5, x)) | |
A = PowerBasis(T) | |
M = A.mult_tab() | |
exp = {0: {0: [1, 0, 0, 0], 1: [0, 1, 0, 0], 2: [0, 0, 1, 0], 3: [0, 0, 0, 1]}, | |
1: {1: [0, 0, 1, 0], 2: [0, 0, 0, 1], 3: [-1, -1, -1, -1]}, | |
2: {2: [-1, -1, -1, -1], 3: [1, 0, 0, 0]}, | |
3: {3: [0, 1, 0, 0]}} | |
# We get the table we expect: | |
assert M == exp | |
# And all entries are of expected type: | |
assert all(is_int(c) for u in M for v in M[u] for c in M[u][v]) | |
def test_PowerBasis_represent(): | |
T = Poly(cyclotomic_poly(5, x)) | |
A = PowerBasis(T) | |
col = to_col([1, 2, 3, 4]) | |
a = A(col) | |
assert A.represent(a) == col | |
b = A(col, denom=2) | |
raises(ClosureFailure, lambda: A.represent(b)) | |
def test_PowerBasis_element_from_poly(): | |
T = Poly(cyclotomic_poly(5, x)) | |
A = PowerBasis(T) | |
f = Poly(1 + 2*x) | |
g = Poly(x**4) | |
h = Poly(0, x) | |
assert A.element_from_poly(f).coeffs == [1, 2, 0, 0] | |
assert A.element_from_poly(g).coeffs == [-1, -1, -1, -1] | |
assert A.element_from_poly(h).coeffs == [0, 0, 0, 0] | |
def test_PowerBasis_element__conversions(): | |
k = QQ.cyclotomic_field(5) | |
L = QQ.cyclotomic_field(7) | |
B = PowerBasis(k) | |
# ANP --> PowerBasisElement | |
a = k([QQ(1, 2), QQ(1, 3), 5, 7]) | |
e = B.element_from_ANP(a) | |
assert e.coeffs == [42, 30, 2, 3] | |
assert e.denom == 6 | |
# PowerBasisElement --> ANP | |
assert e.to_ANP() == a | |
# Cannot convert ANP from different field | |
d = L([QQ(1, 2), QQ(1, 3), 5, 7]) | |
raises(UnificationFailed, lambda: B.element_from_ANP(d)) | |
# AlgebraicNumber --> PowerBasisElement | |
alpha = k.to_alg_num(a) | |
eps = B.element_from_alg_num(alpha) | |
assert eps.coeffs == [42, 30, 2, 3] | |
assert eps.denom == 6 | |
# PowerBasisElement --> AlgebraicNumber | |
assert eps.to_alg_num() == alpha | |
# Cannot convert AlgebraicNumber from different field | |
delta = L.to_alg_num(d) | |
raises(UnificationFailed, lambda: B.element_from_alg_num(delta)) | |
# When we don't know the field: | |
C = PowerBasis(k.ext.minpoly) | |
# Can convert from AlgebraicNumber: | |
eps = C.element_from_alg_num(alpha) | |
assert eps.coeffs == [42, 30, 2, 3] | |
assert eps.denom == 6 | |
# But can't convert back: | |
raises(StructureError, lambda: eps.to_alg_num()) | |
def test_Submodule_repr(): | |
T = Poly(cyclotomic_poly(5, x)) | |
A = PowerBasis(T) | |
B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ), denom=3) | |
assert repr(B) == 'Submodule[[2, 0, 0, 0], [0, 2, 0, 0], [0, 0, 2, 0], [0, 0, 0, 2]]/3' | |
def test_Submodule_reduced(): | |
T = Poly(cyclotomic_poly(5, x)) | |
A = PowerBasis(T) | |
B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ)) | |
C = A.submodule_from_matrix(6 * DomainMatrix.eye(4, ZZ), denom=3) | |
D = C.reduced() | |
assert D.denom == 1 and D == C == B | |
def test_Submodule_discard_before(): | |
T = Poly(cyclotomic_poly(5, x)) | |
A = PowerBasis(T) | |
B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ)) | |
B.compute_mult_tab() | |
C = B.discard_before(2) | |
assert C.parent == B.parent | |
assert B.is_sq_maxrank_HNF() and not C.is_sq_maxrank_HNF() | |
assert C.matrix == B.matrix[:, 2:] | |
assert C.mult_tab() == {0: {0: [-2, -2], 1: [0, 0]}, 1: {1: [0, 0]}} | |
def test_Submodule_QQ_matrix(): | |
T = Poly(cyclotomic_poly(5, x)) | |
A = PowerBasis(T) | |
B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ)) | |
C = A.submodule_from_matrix(6 * DomainMatrix.eye(4, ZZ), denom=3) | |
assert C.QQ_matrix == B.QQ_matrix | |
def test_Submodule_represent(): | |
T = Poly(cyclotomic_poly(5, x)) | |
A = PowerBasis(T) | |
B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ)) | |
C = B.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ)) | |
a0 = A(to_col([6, 12, 18, 24])) | |
a1 = A(to_col([2, 4, 6, 8])) | |
a2 = A(to_col([1, 3, 5, 7])) | |
b1 = B.represent(a1) | |
assert b1.flat() == [1, 2, 3, 4] | |
c0 = C.represent(a0) | |
assert c0.flat() == [1, 2, 3, 4] | |
Y = A.submodule_from_matrix(DomainMatrix([ | |
[1, 0, 0, 0], | |
[0, 1, 0, 0], | |
[0, 0, 1, 0], | |
], (3, 4), ZZ).transpose()) | |
U = Poly(cyclotomic_poly(7, x)) | |
Z = PowerBasis(U) | |
z0 = Z(to_col([1, 2, 3, 4, 5, 6])) | |
raises(ClosureFailure, lambda: Y.represent(A(3))) | |
raises(ClosureFailure, lambda: B.represent(a2)) | |
raises(ClosureFailure, lambda: B.represent(z0)) | |
def test_Submodule_is_compat_submodule(): | |
T = Poly(cyclotomic_poly(5, x)) | |
A = PowerBasis(T) | |
B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ)) | |
C = A.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ)) | |
D = C.submodule_from_matrix(5 * DomainMatrix.eye(4, ZZ)) | |
assert B.is_compat_submodule(C) is True | |
assert B.is_compat_submodule(A) is False | |
assert B.is_compat_submodule(D) is False | |
def test_Submodule_eq(): | |
T = Poly(cyclotomic_poly(5, x)) | |
A = PowerBasis(T) | |
B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ)) | |
C = A.submodule_from_matrix(6 * DomainMatrix.eye(4, ZZ), denom=3) | |
assert C == B | |
def test_Submodule_add(): | |
T = Poly(cyclotomic_poly(5, x)) | |
A = PowerBasis(T) | |
B = A.submodule_from_matrix(DomainMatrix([ | |
[4, 0, 0, 0], | |
[0, 4, 0, 0], | |
], (2, 4), ZZ).transpose(), denom=6) | |
C = A.submodule_from_matrix(DomainMatrix([ | |
[0, 10, 0, 0], | |
[0, 0, 7, 0], | |
], (2, 4), ZZ).transpose(), denom=15) | |
D = A.submodule_from_matrix(DomainMatrix([ | |
[20, 0, 0, 0], | |
[ 0, 20, 0, 0], | |
[ 0, 0, 14, 0], | |
], (3, 4), ZZ).transpose(), denom=30) | |
assert B + C == D | |
U = Poly(cyclotomic_poly(7, x)) | |
Z = PowerBasis(U) | |
Y = Z.submodule_from_gens([Z(0), Z(1)]) | |
raises(TypeError, lambda: B + Y) | |
def test_Submodule_mul(): | |
T = Poly(cyclotomic_poly(5, x)) | |
A = PowerBasis(T) | |
C = A.submodule_from_matrix(DomainMatrix([ | |
[0, 10, 0, 0], | |
[0, 0, 7, 0], | |
], (2, 4), ZZ).transpose(), denom=15) | |
C1 = A.submodule_from_matrix(DomainMatrix([ | |
[0, 20, 0, 0], | |
[0, 0, 14, 0], | |
], (2, 4), ZZ).transpose(), denom=3) | |
C2 = A.submodule_from_matrix(DomainMatrix([ | |
[0, 0, 10, 0], | |
[0, 0, 0, 7], | |
], (2, 4), ZZ).transpose(), denom=15) | |
C3_unred = A.submodule_from_matrix(DomainMatrix([ | |
[0, 0, 100, 0], | |
[0, 0, 0, 70], | |
[0, 0, 0, 70], | |
[-49, -49, -49, -49] | |
], (4, 4), ZZ).transpose(), denom=225) | |
C3 = A.submodule_from_matrix(DomainMatrix([ | |
[4900, 4900, 0, 0], | |
[4410, 4410, 10, 0], | |
[2107, 2107, 7, 7] | |
], (3, 4), ZZ).transpose(), denom=225) | |
assert C * 1 == C | |
assert C ** 1 == C | |
assert C * 10 == C1 | |
assert C * A(1) == C2 | |
assert C.mul(C, hnf=False) == C3_unred | |
assert C * C == C3 | |
assert C ** 2 == C3 | |
def test_Submodule_reduce_element(): | |
T = Poly(cyclotomic_poly(5, x)) | |
A = PowerBasis(T) | |
B = A.whole_submodule() | |
b = B(to_col([90, 84, 80, 75]), denom=120) | |
C = B.submodule_from_matrix(DomainMatrix.eye(4, ZZ), denom=2) | |
b_bar_expected = B(to_col([30, 24, 20, 15]), denom=120) | |
b_bar = C.reduce_element(b) | |
assert b_bar == b_bar_expected | |
C = B.submodule_from_matrix(DomainMatrix.eye(4, ZZ), denom=4) | |
b_bar_expected = B(to_col([0, 24, 20, 15]), denom=120) | |
b_bar = C.reduce_element(b) | |
assert b_bar == b_bar_expected | |
C = B.submodule_from_matrix(DomainMatrix.eye(4, ZZ), denom=8) | |
b_bar_expected = B(to_col([0, 9, 5, 0]), denom=120) | |
b_bar = C.reduce_element(b) | |
assert b_bar == b_bar_expected | |
a = A(to_col([1, 2, 3, 4])) | |
raises(NotImplementedError, lambda: C.reduce_element(a)) | |
C = B.submodule_from_matrix(DomainMatrix([ | |
[5, 4, 3, 2], | |
[0, 8, 7, 6], | |
[0, 0,11,12], | |
[0, 0, 0, 1] | |
], (4, 4), ZZ).transpose()) | |
raises(StructureError, lambda: C.reduce_element(b)) | |
def test_is_HNF(): | |
M = DM([ | |
[3, 2, 1], | |
[0, 2, 1], | |
[0, 0, 1] | |
], ZZ) | |
M1 = DM([ | |
[3, 2, 1], | |
[0, -2, 1], | |
[0, 0, 1] | |
], ZZ) | |
M2 = DM([ | |
[3, 2, 3], | |
[0, 2, 1], | |
[0, 0, 1] | |
], ZZ) | |
assert is_sq_maxrank_HNF(M) is True | |
assert is_sq_maxrank_HNF(M1) is False | |
assert is_sq_maxrank_HNF(M2) is False | |
def test_make_mod_elt(): | |
T = Poly(cyclotomic_poly(5, x)) | |
A = PowerBasis(T) | |
B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ)) | |
col = to_col([1, 2, 3, 4]) | |
eA = make_mod_elt(A, col) | |
eB = make_mod_elt(B, col) | |
assert isinstance(eA, PowerBasisElement) | |
assert not isinstance(eB, PowerBasisElement) | |
def test_ModuleElement_repr(): | |
T = Poly(cyclotomic_poly(5, x)) | |
A = PowerBasis(T) | |
e = A(to_col([1, 2, 3, 4]), denom=2) | |
assert repr(e) == '[1, 2, 3, 4]/2' | |
def test_ModuleElement_reduced(): | |
T = Poly(cyclotomic_poly(5, x)) | |
A = PowerBasis(T) | |
e = A(to_col([2, 4, 6, 8]), denom=2) | |
f = e.reduced() | |
assert f.denom == 1 and f == e | |
def test_ModuleElement_reduced_mod_p(): | |
T = Poly(cyclotomic_poly(5, x)) | |
A = PowerBasis(T) | |
e = A(to_col([20, 40, 60, 80])) | |
f = e.reduced_mod_p(7) | |
assert f.coeffs == [-1, -2, -3, 3] | |
def test_ModuleElement_from_int_list(): | |
T = Poly(cyclotomic_poly(5, x)) | |
A = PowerBasis(T) | |
c = [1, 2, 3, 4] | |
assert ModuleElement.from_int_list(A, c).coeffs == c | |
def test_ModuleElement_len(): | |
T = Poly(cyclotomic_poly(5, x)) | |
A = PowerBasis(T) | |
e = A(0) | |
assert len(e) == 4 | |
def test_ModuleElement_column(): | |
T = Poly(cyclotomic_poly(5, x)) | |
A = PowerBasis(T) | |
e = A(0) | |
col1 = e.column() | |
assert col1 == e.col and col1 is not e.col | |
col2 = e.column(domain=FF(5)) | |
assert col2.domain.is_FF | |
def test_ModuleElement_QQ_col(): | |
T = Poly(cyclotomic_poly(5, x)) | |
A = PowerBasis(T) | |
e = A(to_col([1, 2, 3, 4]), denom=1) | |
f = A(to_col([3, 6, 9, 12]), denom=3) | |
assert e.QQ_col == f.QQ_col | |
def test_ModuleElement_to_ancestors(): | |
T = Poly(cyclotomic_poly(5, x)) | |
A = PowerBasis(T) | |
B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ)) | |
C = B.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ)) | |
D = C.submodule_from_matrix(5 * DomainMatrix.eye(4, ZZ)) | |
eD = D(0) | |
eC = eD.to_parent() | |
eB = eD.to_ancestor(B) | |
eA = eD.over_power_basis() | |
assert eC.module is C and eC.coeffs == [5, 0, 0, 0] | |
assert eB.module is B and eB.coeffs == [15, 0, 0, 0] | |
assert eA.module is A and eA.coeffs == [30, 0, 0, 0] | |
a = A(0) | |
raises(ValueError, lambda: a.to_parent()) | |
def test_ModuleElement_compatibility(): | |
T = Poly(cyclotomic_poly(5, x)) | |
A = PowerBasis(T) | |
B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ)) | |
C = B.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ)) | |
D = B.submodule_from_matrix(5 * DomainMatrix.eye(4, ZZ)) | |
assert C(0).is_compat(C(1)) is True | |
assert C(0).is_compat(D(0)) is False | |
u, v = C(0).unify(D(0)) | |
assert u.module is B and v.module is B | |
assert C(C.represent(u)) == C(0) and D(D.represent(v)) == D(0) | |
u, v = C(0).unify(C(1)) | |
assert u == C(0) and v == C(1) | |
U = Poly(cyclotomic_poly(7, x)) | |
Z = PowerBasis(U) | |
raises(UnificationFailed, lambda: C(0).unify(Z(1))) | |
def test_ModuleElement_eq(): | |
T = Poly(cyclotomic_poly(5, x)) | |
A = PowerBasis(T) | |
e = A(to_col([1, 2, 3, 4]), denom=1) | |
f = A(to_col([3, 6, 9, 12]), denom=3) | |
assert e == f | |
U = Poly(cyclotomic_poly(7, x)) | |
Z = PowerBasis(U) | |
assert e != Z(0) | |
assert e != 3.14 | |
def test_ModuleElement_equiv(): | |
T = Poly(cyclotomic_poly(5, x)) | |
A = PowerBasis(T) | |
e = A(to_col([1, 2, 3, 4]), denom=1) | |
f = A(to_col([3, 6, 9, 12]), denom=3) | |
assert e.equiv(f) | |
C = A.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ)) | |
g = C(to_col([1, 2, 3, 4]), denom=1) | |
h = A(to_col([3, 6, 9, 12]), denom=1) | |
assert g.equiv(h) | |
assert C(to_col([5, 0, 0, 0]), denom=7).equiv(QQ(15, 7)) | |
U = Poly(cyclotomic_poly(7, x)) | |
Z = PowerBasis(U) | |
raises(UnificationFailed, lambda: e.equiv(Z(0))) | |
assert e.equiv(3.14) is False | |
def test_ModuleElement_add(): | |
T = Poly(cyclotomic_poly(5, x)) | |
A = PowerBasis(T) | |
C = A.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ)) | |
e = A(to_col([1, 2, 3, 4]), denom=6) | |
f = A(to_col([5, 6, 7, 8]), denom=10) | |
g = C(to_col([1, 1, 1, 1]), denom=2) | |
assert e + f == A(to_col([10, 14, 18, 22]), denom=15) | |
assert e - f == A(to_col([-5, -4, -3, -2]), denom=15) | |
assert e + g == A(to_col([10, 11, 12, 13]), denom=6) | |
assert e + QQ(7, 10) == A(to_col([26, 10, 15, 20]), denom=30) | |
assert g + QQ(7, 10) == A(to_col([22, 15, 15, 15]), denom=10) | |
U = Poly(cyclotomic_poly(7, x)) | |
Z = PowerBasis(U) | |
raises(TypeError, lambda: e + Z(0)) | |
raises(TypeError, lambda: e + 3.14) | |
def test_ModuleElement_mul(): | |
T = Poly(cyclotomic_poly(5, x)) | |
A = PowerBasis(T) | |
C = A.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ)) | |
e = A(to_col([0, 2, 0, 0]), denom=3) | |
f = A(to_col([0, 0, 0, 7]), denom=5) | |
g = C(to_col([0, 0, 0, 1]), denom=2) | |
h = A(to_col([0, 0, 3, 1]), denom=7) | |
assert e * f == A(to_col([-14, -14, -14, -14]), denom=15) | |
assert e * g == A(to_col([-1, -1, -1, -1])) | |
assert e * h == A(to_col([-2, -2, -2, 4]), denom=21) | |
assert e * QQ(6, 5) == A(to_col([0, 4, 0, 0]), denom=5) | |
assert (g * QQ(10, 21)).equiv(A(to_col([0, 0, 0, 5]), denom=7)) | |
assert e // QQ(6, 5) == A(to_col([0, 5, 0, 0]), denom=9) | |
U = Poly(cyclotomic_poly(7, x)) | |
Z = PowerBasis(U) | |
raises(TypeError, lambda: e * Z(0)) | |
raises(TypeError, lambda: e * 3.14) | |
raises(TypeError, lambda: e // 3.14) | |
raises(ZeroDivisionError, lambda: e // 0) | |
def test_ModuleElement_div(): | |
T = Poly(cyclotomic_poly(5, x)) | |
A = PowerBasis(T) | |
C = A.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ)) | |
e = A(to_col([0, 2, 0, 0]), denom=3) | |
f = A(to_col([0, 0, 0, 7]), denom=5) | |
g = C(to_col([1, 1, 1, 1])) | |
assert e // f == 10*A(3)//21 | |
assert e // g == -2*A(2)//9 | |
assert 3 // g == -A(1) | |
def test_ModuleElement_pow(): | |
T = Poly(cyclotomic_poly(5, x)) | |
A = PowerBasis(T) | |
C = A.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ)) | |
e = A(to_col([0, 2, 0, 0]), denom=3) | |
g = C(to_col([0, 0, 0, 1]), denom=2) | |
assert e ** 3 == A(to_col([0, 0, 0, 8]), denom=27) | |
assert g ** 2 == C(to_col([0, 3, 0, 0]), denom=4) | |
assert e ** 0 == A(to_col([1, 0, 0, 0])) | |
assert g ** 0 == A(to_col([1, 0, 0, 0])) | |
assert e ** 1 == e | |
assert g ** 1 == g | |
def test_ModuleElement_mod(): | |
T = Poly(cyclotomic_poly(5, x)) | |
A = PowerBasis(T) | |
e = A(to_col([1, 15, 8, 0]), denom=2) | |
assert e % 7 == A(to_col([1, 1, 8, 0]), denom=2) | |
assert e % QQ(1, 2) == A.zero() | |
assert e % QQ(1, 3) == A(to_col([1, 1, 0, 0]), denom=6) | |
B = A.submodule_from_gens([A(0), 5*A(1), 3*A(2), A(3)]) | |
assert e % B == A(to_col([1, 5, 2, 0]), denom=2) | |
C = B.whole_submodule() | |
raises(TypeError, lambda: e % C) | |
def test_PowerBasisElement_polys(): | |
T = Poly(cyclotomic_poly(5, x)) | |
A = PowerBasis(T) | |
e = A(to_col([1, 15, 8, 0]), denom=2) | |
assert e.numerator(x=zeta) == Poly(8 * zeta ** 2 + 15 * zeta + 1, domain=ZZ) | |
assert e.poly(x=zeta) == Poly(4 * zeta ** 2 + QQ(15, 2) * zeta + QQ(1, 2), domain=QQ) | |
def test_PowerBasisElement_norm(): | |
T = Poly(cyclotomic_poly(5, x)) | |
A = PowerBasis(T) | |
lam = A(to_col([1, -1, 0, 0])) | |
assert lam.norm() == 5 | |
def test_PowerBasisElement_inverse(): | |
T = Poly(cyclotomic_poly(5, x)) | |
A = PowerBasis(T) | |
e = A(to_col([1, 1, 1, 1])) | |
assert 2 // e == -2*A(1) | |
assert e ** -3 == -A(3) | |
def test_ModuleHomomorphism_matrix(): | |
T = Poly(cyclotomic_poly(5, x)) | |
A = PowerBasis(T) | |
phi = ModuleEndomorphism(A, lambda a: a ** 2) | |
M = phi.matrix() | |
assert M == DomainMatrix([ | |
[1, 0, -1, 0], | |
[0, 0, -1, 1], | |
[0, 1, -1, 0], | |
[0, 0, -1, 0] | |
], (4, 4), ZZ) | |
def test_ModuleHomomorphism_kernel(): | |
T = Poly(cyclotomic_poly(5, x)) | |
A = PowerBasis(T) | |
phi = ModuleEndomorphism(A, lambda a: a ** 5) | |
N = phi.kernel() | |
assert N.n == 3 | |
def test_EndomorphismRing_represent(): | |
T = Poly(cyclotomic_poly(5, x)) | |
A = PowerBasis(T) | |
R = A.endomorphism_ring() | |
phi = R.inner_endomorphism(A(1)) | |
col = R.represent(phi) | |
assert col.transpose() == DomainMatrix([ | |
[0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, -1, -1, -1, -1] | |
], (1, 16), ZZ) | |
B = A.submodule_from_matrix(DomainMatrix.zeros((4, 0), ZZ)) | |
S = B.endomorphism_ring() | |
psi = S.inner_endomorphism(A(1)) | |
col = S.represent(psi) | |
assert col == DomainMatrix([], (0, 0), ZZ) | |
raises(NotImplementedError, lambda: R.represent(3.14)) | |
def test_find_min_poly(): | |
T = Poly(cyclotomic_poly(5, x)) | |
A = PowerBasis(T) | |
powers = [] | |
m = find_min_poly(A(1), QQ, x=x, powers=powers) | |
assert m == Poly(T, domain=QQ) | |
assert len(powers) == 5 | |
# powers list need not be passed | |
m = find_min_poly(A(1), QQ, x=x) | |
assert m == Poly(T, domain=QQ) | |
B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ)) | |
raises(MissingUnityError, lambda: find_min_poly(B(1), QQ)) | |