File size: 22,926 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
from sympy.abc import x, zeta
from sympy.polys import Poly, cyclotomic_poly
from sympy.polys.domains import FF, QQ, ZZ
from sympy.polys.matrices import DomainMatrix, DM
from sympy.polys.numberfields.exceptions import (
    ClosureFailure, MissingUnityError, StructureError
)
from sympy.polys.numberfields.modules import (
    Module, ModuleElement, ModuleEndomorphism, PowerBasis, PowerBasisElement,
    find_min_poly, is_sq_maxrank_HNF, make_mod_elt, to_col,
)
from sympy.polys.numberfields.utilities import is_int
from sympy.polys.polyerrors import UnificationFailed
from sympy.testing.pytest import raises


def test_to_col():
    c = [1, 2, 3, 4]
    m = to_col(c)
    assert m.domain.is_ZZ
    assert m.shape == (4, 1)
    assert m.flat() == c


def test_Module_NotImplemented():
    M = Module()
    raises(NotImplementedError, lambda: M.n)
    raises(NotImplementedError, lambda: M.mult_tab())
    raises(NotImplementedError, lambda: M.represent(None))
    raises(NotImplementedError, lambda: M.starts_with_unity())
    raises(NotImplementedError, lambda: M.element_from_rational(QQ(2, 3)))


def test_Module_ancestors():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
    C = B.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ))
    D = B.submodule_from_matrix(5 * DomainMatrix.eye(4, ZZ))
    assert C.ancestors(include_self=True) == [A, B, C]
    assert D.ancestors(include_self=True) == [A, B, D]
    assert C.power_basis_ancestor() == A
    assert C.nearest_common_ancestor(D) == B
    M = Module()
    assert M.power_basis_ancestor() is None


def test_Module_compat_col():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    col = to_col([1, 2, 3, 4])
    row = col.transpose()
    assert A.is_compat_col(col) is True
    assert A.is_compat_col(row) is False
    assert A.is_compat_col(1) is False
    assert A.is_compat_col(DomainMatrix.eye(3, ZZ)[:, 0]) is False
    assert A.is_compat_col(DomainMatrix.eye(4, QQ)[:, 0]) is False
    assert A.is_compat_col(DomainMatrix.eye(4, ZZ)[:, 0]) is True


def test_Module_call():
    T = Poly(cyclotomic_poly(5, x))
    B = PowerBasis(T)
    assert B(0).col.flat() == [1, 0, 0, 0]
    assert B(1).col.flat() == [0, 1, 0, 0]
    col = DomainMatrix.eye(4, ZZ)[:, 2]
    assert B(col).col == col
    raises(ValueError, lambda: B(-1))


def test_Module_starts_with_unity():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
    assert A.starts_with_unity() is True
    assert B.starts_with_unity() is False


def test_Module_basis_elements():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
    basis = B.basis_elements()
    bp = B.basis_element_pullbacks()
    for i, (e, p) in enumerate(zip(basis, bp)):
        c = [0] * 4
        assert e.module == B
        assert p.module == A
        c[i] = 1
        assert e == B(to_col(c))
        c[i] = 2
        assert p == A(to_col(c))


def test_Module_zero():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
    assert A.zero().col.flat() == [0, 0, 0, 0]
    assert A.zero().module == A
    assert B.zero().col.flat() == [0, 0, 0, 0]
    assert B.zero().module == B


def test_Module_one():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
    assert A.one().col.flat() == [1, 0, 0, 0]
    assert A.one().module == A
    assert B.one().col.flat() == [1, 0, 0, 0]
    assert B.one().module == A


def test_Module_element_from_rational():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
    rA = A.element_from_rational(QQ(22, 7))
    rB = B.element_from_rational(QQ(22, 7))
    assert rA.coeffs == [22, 0, 0, 0]
    assert rA.denom == 7
    assert rA.module == A
    assert rB.coeffs == [22, 0, 0, 0]
    assert rB.denom == 7
    assert rB.module == A


def test_Module_submodule_from_gens():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    gens = [2*A(0), 2*A(1), 6*A(0), 6*A(1)]
    B = A.submodule_from_gens(gens)
    # Because the 3rd and 4th generators do not add anything new, we expect
    # the cols of the matrix of B to just reproduce the first two gens:
    M = gens[0].column().hstack(gens[1].column())
    assert B.matrix == M
    # At least one generator must be provided:
    raises(ValueError, lambda: A.submodule_from_gens([]))
    # All generators must belong to A:
    raises(ValueError, lambda: A.submodule_from_gens([3*A(0), B(0)]))


def test_Module_submodule_from_matrix():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
    e = B(to_col([1, 2, 3, 4]))
    f = e.to_parent()
    assert f.col.flat() == [2, 4, 6, 8]
    # Matrix must be over ZZ:
    raises(ValueError, lambda: A.submodule_from_matrix(DomainMatrix.eye(4, QQ)))
    # Number of rows of matrix must equal number of generators of module A:
    raises(ValueError, lambda: A.submodule_from_matrix(2 * DomainMatrix.eye(5, ZZ)))


def test_Module_whole_submodule():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    B = A.whole_submodule()
    e = B(to_col([1, 2, 3, 4]))
    f = e.to_parent()
    assert f.col.flat() == [1, 2, 3, 4]
    e0, e1, e2, e3 = B(0), B(1), B(2), B(3)
    assert e2 * e3 == e0
    assert e3 ** 2 == e1


def test_PowerBasis_repr():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    assert repr(A) == 'PowerBasis(x**4 + x**3 + x**2 + x + 1)'


def test_PowerBasis_eq():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    B = PowerBasis(T)
    assert A == B


def test_PowerBasis_mult_tab():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    M = A.mult_tab()
    exp = {0: {0: [1, 0, 0, 0], 1: [0, 1, 0, 0], 2: [0, 0, 1, 0], 3: [0, 0, 0, 1]},
           1: {1: [0, 0, 1, 0], 2: [0, 0, 0, 1], 3: [-1, -1, -1, -1]},
           2: {2: [-1, -1, -1, -1], 3: [1, 0, 0, 0]},
           3: {3: [0, 1, 0, 0]}}
    # We get the table we expect:
    assert M == exp
    # And all entries are of expected type:
    assert all(is_int(c) for u in M for v in M[u] for c in M[u][v])


def test_PowerBasis_represent():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    col = to_col([1, 2, 3, 4])
    a = A(col)
    assert A.represent(a) == col
    b = A(col, denom=2)
    raises(ClosureFailure, lambda: A.represent(b))


def test_PowerBasis_element_from_poly():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    f = Poly(1 + 2*x)
    g = Poly(x**4)
    h = Poly(0, x)
    assert A.element_from_poly(f).coeffs == [1, 2, 0, 0]
    assert A.element_from_poly(g).coeffs == [-1, -1, -1, -1]
    assert A.element_from_poly(h).coeffs == [0, 0, 0, 0]


def test_PowerBasis_element__conversions():
    k = QQ.cyclotomic_field(5)
    L = QQ.cyclotomic_field(7)
    B = PowerBasis(k)

    # ANP --> PowerBasisElement
    a = k([QQ(1, 2), QQ(1, 3), 5, 7])
    e = B.element_from_ANP(a)
    assert e.coeffs == [42, 30, 2, 3]
    assert e.denom == 6

    # PowerBasisElement --> ANP
    assert e.to_ANP() == a

    # Cannot convert ANP from different field
    d = L([QQ(1, 2), QQ(1, 3), 5, 7])
    raises(UnificationFailed, lambda: B.element_from_ANP(d))

    # AlgebraicNumber --> PowerBasisElement
    alpha = k.to_alg_num(a)
    eps = B.element_from_alg_num(alpha)
    assert eps.coeffs == [42, 30, 2, 3]
    assert eps.denom == 6

    # PowerBasisElement --> AlgebraicNumber
    assert eps.to_alg_num() == alpha

    # Cannot convert AlgebraicNumber from different field
    delta = L.to_alg_num(d)
    raises(UnificationFailed, lambda: B.element_from_alg_num(delta))

    # When we don't know the field:
    C = PowerBasis(k.ext.minpoly)
    # Can convert from AlgebraicNumber:
    eps = C.element_from_alg_num(alpha)
    assert eps.coeffs == [42, 30, 2, 3]
    assert eps.denom == 6
    # But can't convert back:
    raises(StructureError, lambda: eps.to_alg_num())


def test_Submodule_repr():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ), denom=3)
    assert repr(B) == 'Submodule[[2, 0, 0, 0], [0, 2, 0, 0], [0, 0, 2, 0], [0, 0, 0, 2]]/3'


def test_Submodule_reduced():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
    C = A.submodule_from_matrix(6 * DomainMatrix.eye(4, ZZ), denom=3)
    D = C.reduced()
    assert D.denom == 1 and D == C == B


def test_Submodule_discard_before():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
    B.compute_mult_tab()
    C = B.discard_before(2)
    assert C.parent == B.parent
    assert B.is_sq_maxrank_HNF() and not C.is_sq_maxrank_HNF()
    assert C.matrix == B.matrix[:, 2:]
    assert C.mult_tab() == {0: {0: [-2, -2], 1: [0, 0]}, 1: {1: [0, 0]}}


def test_Submodule_QQ_matrix():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
    C = A.submodule_from_matrix(6 * DomainMatrix.eye(4, ZZ), denom=3)
    assert C.QQ_matrix == B.QQ_matrix


def test_Submodule_represent():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
    C = B.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ))
    a0 = A(to_col([6, 12, 18, 24]))
    a1 = A(to_col([2, 4, 6, 8]))
    a2 = A(to_col([1, 3, 5, 7]))

    b1 = B.represent(a1)
    assert b1.flat() == [1, 2, 3, 4]

    c0 = C.represent(a0)
    assert c0.flat() == [1, 2, 3, 4]

    Y = A.submodule_from_matrix(DomainMatrix([
        [1, 0, 0, 0],
        [0, 1, 0, 0],
        [0, 0, 1, 0],
    ], (3, 4), ZZ).transpose())

    U = Poly(cyclotomic_poly(7, x))
    Z = PowerBasis(U)
    z0 = Z(to_col([1, 2, 3, 4, 5, 6]))

    raises(ClosureFailure, lambda: Y.represent(A(3)))
    raises(ClosureFailure, lambda: B.represent(a2))
    raises(ClosureFailure, lambda: B.represent(z0))


def test_Submodule_is_compat_submodule():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
    C = A.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ))
    D = C.submodule_from_matrix(5 * DomainMatrix.eye(4, ZZ))
    assert B.is_compat_submodule(C) is True
    assert B.is_compat_submodule(A) is False
    assert B.is_compat_submodule(D) is False


def test_Submodule_eq():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
    C = A.submodule_from_matrix(6 * DomainMatrix.eye(4, ZZ), denom=3)
    assert C == B


def test_Submodule_add():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    B = A.submodule_from_matrix(DomainMatrix([
        [4, 0, 0, 0],
        [0, 4, 0, 0],
    ], (2, 4), ZZ).transpose(), denom=6)
    C = A.submodule_from_matrix(DomainMatrix([
        [0, 10, 0, 0],
        [0,  0, 7, 0],
    ], (2, 4), ZZ).transpose(), denom=15)
    D = A.submodule_from_matrix(DomainMatrix([
        [20,  0,  0, 0],
        [ 0, 20,  0, 0],
        [ 0,  0, 14, 0],
    ], (3, 4), ZZ).transpose(), denom=30)
    assert B + C == D

    U = Poly(cyclotomic_poly(7, x))
    Z = PowerBasis(U)
    Y = Z.submodule_from_gens([Z(0), Z(1)])
    raises(TypeError, lambda: B + Y)


def test_Submodule_mul():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    C = A.submodule_from_matrix(DomainMatrix([
        [0, 10, 0, 0],
        [0, 0, 7, 0],
    ], (2, 4), ZZ).transpose(), denom=15)
    C1 = A.submodule_from_matrix(DomainMatrix([
        [0, 20, 0, 0],
        [0, 0, 14, 0],
    ], (2, 4), ZZ).transpose(), denom=3)
    C2 = A.submodule_from_matrix(DomainMatrix([
        [0, 0, 10, 0],
        [0, 0,  0, 7],
    ], (2, 4), ZZ).transpose(), denom=15)
    C3_unred = A.submodule_from_matrix(DomainMatrix([
        [0, 0, 100, 0],
        [0, 0, 0, 70],
        [0, 0, 0, 70],
        [-49, -49, -49, -49]
    ], (4, 4), ZZ).transpose(), denom=225)
    C3 = A.submodule_from_matrix(DomainMatrix([
        [4900, 4900, 0, 0],
        [4410, 4410, 10, 0],
        [2107, 2107, 7, 7]
    ], (3, 4), ZZ).transpose(), denom=225)
    assert C * 1 == C
    assert C ** 1 == C
    assert C * 10 == C1
    assert C * A(1) == C2
    assert C.mul(C, hnf=False) == C3_unred
    assert C * C == C3
    assert C ** 2 == C3


def test_Submodule_reduce_element():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    B = A.whole_submodule()
    b = B(to_col([90, 84, 80, 75]), denom=120)

    C = B.submodule_from_matrix(DomainMatrix.eye(4, ZZ), denom=2)
    b_bar_expected = B(to_col([30, 24, 20, 15]), denom=120)
    b_bar = C.reduce_element(b)
    assert b_bar == b_bar_expected

    C = B.submodule_from_matrix(DomainMatrix.eye(4, ZZ), denom=4)
    b_bar_expected = B(to_col([0, 24, 20, 15]), denom=120)
    b_bar = C.reduce_element(b)
    assert b_bar == b_bar_expected

    C = B.submodule_from_matrix(DomainMatrix.eye(4, ZZ), denom=8)
    b_bar_expected = B(to_col([0, 9, 5, 0]), denom=120)
    b_bar = C.reduce_element(b)
    assert b_bar == b_bar_expected

    a = A(to_col([1, 2, 3, 4]))
    raises(NotImplementedError, lambda: C.reduce_element(a))

    C = B.submodule_from_matrix(DomainMatrix([
        [5, 4, 3, 2],
        [0, 8, 7, 6],
        [0, 0,11,12],
        [0, 0, 0, 1]
    ], (4, 4), ZZ).transpose())
    raises(StructureError, lambda: C.reduce_element(b))


def test_is_HNF():
    M = DM([
        [3, 2, 1],
        [0, 2, 1],
        [0, 0, 1]
    ], ZZ)
    M1 = DM([
        [3, 2, 1],
        [0, -2, 1],
        [0, 0, 1]
    ], ZZ)
    M2 = DM([
        [3, 2, 3],
        [0, 2, 1],
        [0, 0, 1]
    ], ZZ)
    assert is_sq_maxrank_HNF(M) is True
    assert is_sq_maxrank_HNF(M1) is False
    assert is_sq_maxrank_HNF(M2) is False


def test_make_mod_elt():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
    col = to_col([1, 2, 3, 4])
    eA = make_mod_elt(A, col)
    eB = make_mod_elt(B, col)
    assert isinstance(eA, PowerBasisElement)
    assert not isinstance(eB, PowerBasisElement)


def test_ModuleElement_repr():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    e = A(to_col([1, 2, 3, 4]), denom=2)
    assert repr(e) == '[1, 2, 3, 4]/2'


def test_ModuleElement_reduced():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    e = A(to_col([2, 4, 6, 8]), denom=2)
    f = e.reduced()
    assert f.denom == 1 and f == e


def test_ModuleElement_reduced_mod_p():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    e = A(to_col([20, 40, 60, 80]))
    f = e.reduced_mod_p(7)
    assert f.coeffs == [-1, -2, -3, 3]


def test_ModuleElement_from_int_list():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    c = [1, 2, 3, 4]
    assert ModuleElement.from_int_list(A, c).coeffs == c


def test_ModuleElement_len():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    e = A(0)
    assert len(e) == 4


def test_ModuleElement_column():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    e = A(0)
    col1 = e.column()
    assert col1 == e.col and col1 is not e.col
    col2 = e.column(domain=FF(5))
    assert col2.domain.is_FF


def test_ModuleElement_QQ_col():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    e = A(to_col([1, 2, 3, 4]), denom=1)
    f = A(to_col([3, 6, 9, 12]), denom=3)
    assert e.QQ_col == f.QQ_col


def test_ModuleElement_to_ancestors():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
    C = B.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ))
    D = C.submodule_from_matrix(5 * DomainMatrix.eye(4, ZZ))
    eD = D(0)
    eC = eD.to_parent()
    eB = eD.to_ancestor(B)
    eA = eD.over_power_basis()
    assert eC.module is C and eC.coeffs == [5, 0, 0, 0]
    assert eB.module is B and eB.coeffs == [15, 0, 0, 0]
    assert eA.module is A and eA.coeffs == [30, 0, 0, 0]

    a = A(0)
    raises(ValueError, lambda: a.to_parent())


def test_ModuleElement_compatibility():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
    C = B.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ))
    D = B.submodule_from_matrix(5 * DomainMatrix.eye(4, ZZ))
    assert C(0).is_compat(C(1)) is True
    assert C(0).is_compat(D(0)) is False
    u, v = C(0).unify(D(0))
    assert u.module is B and v.module is B
    assert C(C.represent(u)) == C(0) and D(D.represent(v)) == D(0)

    u, v = C(0).unify(C(1))
    assert u == C(0) and v == C(1)

    U = Poly(cyclotomic_poly(7, x))
    Z = PowerBasis(U)
    raises(UnificationFailed, lambda: C(0).unify(Z(1)))


def test_ModuleElement_eq():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    e = A(to_col([1, 2, 3, 4]), denom=1)
    f = A(to_col([3, 6, 9, 12]), denom=3)
    assert e == f

    U = Poly(cyclotomic_poly(7, x))
    Z = PowerBasis(U)
    assert e != Z(0)
    assert e != 3.14


def test_ModuleElement_equiv():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    e = A(to_col([1, 2, 3, 4]), denom=1)
    f = A(to_col([3, 6, 9, 12]), denom=3)
    assert e.equiv(f)

    C = A.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ))
    g = C(to_col([1, 2, 3, 4]), denom=1)
    h = A(to_col([3, 6, 9, 12]), denom=1)
    assert g.equiv(h)
    assert C(to_col([5, 0, 0, 0]), denom=7).equiv(QQ(15, 7))

    U = Poly(cyclotomic_poly(7, x))
    Z = PowerBasis(U)
    raises(UnificationFailed, lambda: e.equiv(Z(0)))

    assert e.equiv(3.14) is False


def test_ModuleElement_add():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    C = A.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ))
    e = A(to_col([1, 2, 3, 4]), denom=6)
    f = A(to_col([5, 6, 7, 8]), denom=10)
    g = C(to_col([1, 1, 1, 1]), denom=2)
    assert e + f == A(to_col([10, 14, 18, 22]), denom=15)
    assert e - f == A(to_col([-5, -4, -3, -2]), denom=15)
    assert e + g == A(to_col([10, 11, 12, 13]), denom=6)
    assert e + QQ(7, 10) == A(to_col([26, 10, 15, 20]), denom=30)
    assert g + QQ(7, 10) == A(to_col([22, 15, 15, 15]), denom=10)

    U = Poly(cyclotomic_poly(7, x))
    Z = PowerBasis(U)
    raises(TypeError, lambda: e + Z(0))
    raises(TypeError, lambda: e + 3.14)


def test_ModuleElement_mul():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    C = A.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ))
    e = A(to_col([0, 2, 0, 0]), denom=3)
    f = A(to_col([0, 0, 0, 7]), denom=5)
    g = C(to_col([0, 0, 0, 1]), denom=2)
    h = A(to_col([0, 0, 3, 1]), denom=7)
    assert e * f == A(to_col([-14, -14, -14, -14]), denom=15)
    assert e * g == A(to_col([-1, -1, -1, -1]))
    assert e * h == A(to_col([-2, -2, -2, 4]), denom=21)
    assert e * QQ(6, 5) == A(to_col([0, 4, 0, 0]), denom=5)
    assert (g * QQ(10, 21)).equiv(A(to_col([0, 0, 0, 5]), denom=7))
    assert e // QQ(6, 5) == A(to_col([0, 5, 0, 0]), denom=9)

    U = Poly(cyclotomic_poly(7, x))
    Z = PowerBasis(U)
    raises(TypeError, lambda: e * Z(0))
    raises(TypeError, lambda: e * 3.14)
    raises(TypeError, lambda: e // 3.14)
    raises(ZeroDivisionError, lambda: e // 0)


def test_ModuleElement_div():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    C = A.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ))
    e = A(to_col([0, 2, 0, 0]), denom=3)
    f = A(to_col([0, 0, 0, 7]), denom=5)
    g = C(to_col([1, 1, 1, 1]))
    assert e // f == 10*A(3)//21
    assert e // g == -2*A(2)//9
    assert 3 // g == -A(1)


def test_ModuleElement_pow():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    C = A.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ))
    e = A(to_col([0, 2, 0, 0]), denom=3)
    g = C(to_col([0, 0, 0, 1]), denom=2)
    assert e ** 3 == A(to_col([0, 0, 0, 8]), denom=27)
    assert g ** 2 == C(to_col([0, 3, 0, 0]), denom=4)
    assert e ** 0 == A(to_col([1, 0, 0, 0]))
    assert g ** 0 == A(to_col([1, 0, 0, 0]))
    assert e ** 1 == e
    assert g ** 1 == g


def test_ModuleElement_mod():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    e = A(to_col([1, 15, 8, 0]), denom=2)
    assert e % 7 == A(to_col([1, 1, 8, 0]), denom=2)
    assert e % QQ(1, 2) == A.zero()
    assert e % QQ(1, 3) == A(to_col([1, 1, 0, 0]), denom=6)

    B = A.submodule_from_gens([A(0), 5*A(1), 3*A(2), A(3)])
    assert e % B == A(to_col([1, 5, 2, 0]), denom=2)

    C = B.whole_submodule()
    raises(TypeError, lambda: e % C)


def test_PowerBasisElement_polys():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    e = A(to_col([1, 15, 8, 0]), denom=2)
    assert e.numerator(x=zeta) == Poly(8 * zeta ** 2 + 15 * zeta + 1, domain=ZZ)
    assert e.poly(x=zeta) == Poly(4 * zeta ** 2 + QQ(15, 2) * zeta + QQ(1, 2), domain=QQ)


def test_PowerBasisElement_norm():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    lam = A(to_col([1, -1, 0, 0]))
    assert lam.norm() == 5


def test_PowerBasisElement_inverse():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    e = A(to_col([1, 1, 1, 1]))
    assert 2 // e == -2*A(1)
    assert e ** -3 == -A(3)


def test_ModuleHomomorphism_matrix():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    phi = ModuleEndomorphism(A, lambda a: a ** 2)
    M = phi.matrix()
    assert M == DomainMatrix([
        [1, 0, -1, 0],
        [0, 0, -1, 1],
        [0, 1, -1, 0],
        [0, 0, -1, 0]
    ], (4, 4), ZZ)


def test_ModuleHomomorphism_kernel():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    phi = ModuleEndomorphism(A, lambda a: a ** 5)
    N = phi.kernel()
    assert N.n == 3


def test_EndomorphismRing_represent():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    R = A.endomorphism_ring()
    phi = R.inner_endomorphism(A(1))
    col = R.represent(phi)
    assert col.transpose() == DomainMatrix([
        [0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, -1, -1, -1, -1]
    ], (1, 16), ZZ)

    B = A.submodule_from_matrix(DomainMatrix.zeros((4, 0), ZZ))
    S = B.endomorphism_ring()
    psi = S.inner_endomorphism(A(1))
    col = S.represent(psi)
    assert col == DomainMatrix([], (0, 0), ZZ)

    raises(NotImplementedError, lambda: R.represent(3.14))


def test_find_min_poly():
    T = Poly(cyclotomic_poly(5, x))
    A = PowerBasis(T)
    powers = []
    m = find_min_poly(A(1), QQ, x=x, powers=powers)
    assert m == Poly(T, domain=QQ)
    assert len(powers) == 5

    # powers list need not be passed
    m = find_min_poly(A(1), QQ, x=x)
    assert m == Poly(T, domain=QQ)

    B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
    raises(MissingUnityError, lambda: find_min_poly(B(1), QQ))