Spaces:
Running
Running
from sympy import ZZ, Matrix | |
from sympy.polys.matrices import DM, DomainMatrix | |
from sympy.polys.matrices.dense import ddm_iinv | |
from sympy.polys.matrices.exceptions import DMNonInvertibleMatrixError | |
from sympy.matrices.exceptions import NonInvertibleMatrixError | |
import pytest | |
from sympy.testing.pytest import raises | |
from sympy.core.numbers import all_close | |
from sympy.abc import x | |
# Examples are given as adjugate matrix and determinant adj_det should match | |
# these exactly but inv_den only matches after cancel_denom. | |
INVERSE_EXAMPLES = [ | |
( | |
'zz_1', | |
DomainMatrix([], (0, 0), ZZ), | |
DomainMatrix([], (0, 0), ZZ), | |
ZZ(1), | |
), | |
( | |
'zz_2', | |
DM([[2]], ZZ), | |
DM([[1]], ZZ), | |
ZZ(2), | |
), | |
( | |
'zz_3', | |
DM([[2, 0], | |
[0, 2]], ZZ), | |
DM([[2, 0], | |
[0, 2]], ZZ), | |
ZZ(4), | |
), | |
( | |
'zz_4', | |
DM([[1, 2], | |
[3, 4]], ZZ), | |
DM([[ 4, -2], | |
[-3, 1]], ZZ), | |
ZZ(-2), | |
), | |
( | |
'zz_5', | |
DM([[2, 2, 0], | |
[0, 2, 2], | |
[0, 0, 2]], ZZ), | |
DM([[4, -4, 4], | |
[0, 4, -4], | |
[0, 0, 4]], ZZ), | |
ZZ(8), | |
), | |
( | |
'zz_6', | |
DM([[1, 2, 3], | |
[4, 5, 6], | |
[7, 8, 9]], ZZ), | |
DM([[-3, 6, -3], | |
[ 6, -12, 6], | |
[-3, 6, -3]], ZZ), | |
ZZ(0), | |
), | |
] | |
def test_Matrix_inv(name, A, A_inv, den): | |
def _check(**kwargs): | |
if den != 0: | |
assert A.inv(**kwargs) == A_inv | |
else: | |
raises(NonInvertibleMatrixError, lambda: A.inv(**kwargs)) | |
K = A.domain | |
A = A.to_Matrix() | |
A_inv = A_inv.to_Matrix() / K.to_sympy(den) | |
_check() | |
for method in ['GE', 'LU', 'ADJ', 'CH', 'LDL', 'QR']: | |
_check(method=method) | |
def test_dm_inv_den(name, A, A_inv, den): | |
if den != 0: | |
A_inv_f, den_f = A.inv_den() | |
assert A_inv_f.cancel_denom(den_f) == A_inv.cancel_denom(den) | |
else: | |
raises(DMNonInvertibleMatrixError, lambda: A.inv_den()) | |
def test_dm_inv(name, A, A_inv, den): | |
A = A.to_field() | |
if den != 0: | |
A_inv = A_inv.to_field() / den | |
assert A.inv() == A_inv | |
else: | |
raises(DMNonInvertibleMatrixError, lambda: A.inv()) | |
def test_ddm_inv(name, A, A_inv, den): | |
A = A.to_field().to_ddm() | |
if den != 0: | |
A_inv = (A_inv.to_field() / den).to_ddm() | |
assert A.inv() == A_inv | |
else: | |
raises(DMNonInvertibleMatrixError, lambda: A.inv()) | |
def test_sdm_inv(name, A, A_inv, den): | |
A = A.to_field().to_sdm() | |
if den != 0: | |
A_inv = (A_inv.to_field() / den).to_sdm() | |
assert A.inv() == A_inv | |
else: | |
raises(DMNonInvertibleMatrixError, lambda: A.inv()) | |
def test_dense_ddm_iinv(name, A, A_inv, den): | |
A = A.to_field().to_ddm().copy() | |
K = A.domain | |
A_result = A.copy() | |
if den != 0: | |
A_inv = (A_inv.to_field() / den).to_ddm() | |
ddm_iinv(A_result, A, K) | |
assert A_result == A_inv | |
else: | |
raises(DMNonInvertibleMatrixError, lambda: ddm_iinv(A_result, A, K)) | |
def test_Matrix_adjugate(name, A, A_inv, den): | |
A = A.to_Matrix() | |
A_inv = A_inv.to_Matrix() | |
assert A.adjugate() == A_inv | |
for method in ["bareiss", "berkowitz", "bird", "laplace", "lu"]: | |
assert A.adjugate(method=method) == A_inv | |
def test_dm_adj_det(name, A, A_inv, den): | |
assert A.adj_det() == (A_inv, den) | |
def test_inverse_inexact(): | |
M = Matrix([[x-0.3, -0.06, -0.22], | |
[-0.46, x-0.48, -0.41], | |
[-0.14, -0.39, x-0.64]]) | |
Mn = Matrix([[1.0*x**2 - 1.12*x + 0.1473, 0.06*x + 0.0474, 0.22*x - 0.081], | |
[0.46*x - 0.237, 1.0*x**2 - 0.94*x + 0.1612, 0.41*x - 0.0218], | |
[0.14*x + 0.1122, 0.39*x - 0.1086, 1.0*x**2 - 0.78*x + 0.1164]]) | |
d = 1.0*x**3 - 1.42*x**2 + 0.4249*x - 0.0546540000000002 | |
Mi = Mn / d | |
M_dm = M.to_DM() | |
M_dmd = M_dm.to_dense() | |
M_dm_num, M_dm_den = M_dm.inv_den() | |
M_dmd_num, M_dmd_den = M_dmd.inv_den() | |
# XXX: We don't check M_dm().to_field().inv() which currently uses division | |
# and produces a more complicate result from gcd cancellation failing. | |
# DomainMatrix.inv() over RR(x) should be changed to clear denominators and | |
# use DomainMatrix.inv_den(). | |
Minvs = [ | |
M.inv(), | |
(M_dm_num.to_field() / M_dm_den).to_Matrix(), | |
(M_dmd_num.to_field() / M_dmd_den).to_Matrix(), | |
M_dm_num.to_Matrix() / M_dm_den.as_expr(), | |
M_dmd_num.to_Matrix() / M_dmd_den.as_expr(), | |
] | |
for Minv in Minvs: | |
for Mi1, Mi2 in zip(Minv.flat(), Mi.flat()): | |
assert all_close(Mi2, Mi1) | |