File size: 5,247 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
from sympy import ZZ, Matrix
from sympy.polys.matrices import DM, DomainMatrix
from sympy.polys.matrices.dense import ddm_iinv
from sympy.polys.matrices.exceptions import DMNonInvertibleMatrixError
from sympy.matrices.exceptions import NonInvertibleMatrixError

import pytest
from sympy.testing.pytest import raises
from sympy.core.numbers import all_close

from sympy.abc import x


# Examples are given as adjugate matrix and determinant adj_det should match
# these exactly but inv_den only matches after cancel_denom.


INVERSE_EXAMPLES = [

    (
        'zz_1',
        DomainMatrix([], (0, 0), ZZ),
        DomainMatrix([], (0, 0), ZZ),
        ZZ(1),
    ),

    (
        'zz_2',
        DM([[2]], ZZ),
        DM([[1]], ZZ),
        ZZ(2),
    ),

    (
        'zz_3',
        DM([[2, 0],
            [0, 2]], ZZ),
        DM([[2, 0],
            [0, 2]], ZZ),
        ZZ(4),
    ),

    (
        'zz_4',
        DM([[1, 2],
            [3, 4]], ZZ),
        DM([[ 4, -2],
            [-3,  1]], ZZ),
        ZZ(-2),
    ),

    (
        'zz_5',
        DM([[2, 2, 0],
            [0, 2, 2],
            [0, 0, 2]], ZZ),
        DM([[4, -4, 4],
            [0, 4, -4],
            [0, 0,  4]], ZZ),
        ZZ(8),
    ),

    (
        'zz_6',
        DM([[1, 2, 3],
            [4, 5, 6],
            [7, 8, 9]], ZZ),
        DM([[-3,   6, -3],
            [ 6, -12,  6],
            [-3,   6, -3]], ZZ),
        ZZ(0),
    ),
]


@pytest.mark.parametrize('name, A, A_inv, den', INVERSE_EXAMPLES)
def test_Matrix_inv(name, A, A_inv, den):

    def _check(**kwargs):
        if den != 0:
            assert A.inv(**kwargs) == A_inv
        else:
            raises(NonInvertibleMatrixError, lambda: A.inv(**kwargs))

    K = A.domain
    A = A.to_Matrix()
    A_inv = A_inv.to_Matrix() / K.to_sympy(den)
    _check()
    for method in ['GE', 'LU', 'ADJ', 'CH', 'LDL', 'QR']:
        _check(method=method)


@pytest.mark.parametrize('name, A, A_inv, den', INVERSE_EXAMPLES)
def test_dm_inv_den(name, A, A_inv, den):
    if den != 0:
        A_inv_f, den_f = A.inv_den()
        assert A_inv_f.cancel_denom(den_f) == A_inv.cancel_denom(den)
    else:
        raises(DMNonInvertibleMatrixError, lambda: A.inv_den())


@pytest.mark.parametrize('name, A, A_inv, den', INVERSE_EXAMPLES)
def test_dm_inv(name, A, A_inv, den):
    A = A.to_field()
    if den != 0:
        A_inv = A_inv.to_field() / den
        assert A.inv() == A_inv
    else:
        raises(DMNonInvertibleMatrixError, lambda: A.inv())


@pytest.mark.parametrize('name, A, A_inv, den', INVERSE_EXAMPLES)
def test_ddm_inv(name, A, A_inv, den):
    A = A.to_field().to_ddm()
    if den != 0:
        A_inv = (A_inv.to_field() / den).to_ddm()
        assert A.inv() == A_inv
    else:
        raises(DMNonInvertibleMatrixError, lambda: A.inv())


@pytest.mark.parametrize('name, A, A_inv, den', INVERSE_EXAMPLES)
def test_sdm_inv(name, A, A_inv, den):
    A = A.to_field().to_sdm()
    if den != 0:
        A_inv = (A_inv.to_field() / den).to_sdm()
        assert A.inv() == A_inv
    else:
        raises(DMNonInvertibleMatrixError, lambda: A.inv())


@pytest.mark.parametrize('name, A, A_inv, den', INVERSE_EXAMPLES)
def test_dense_ddm_iinv(name, A, A_inv, den):
    A = A.to_field().to_ddm().copy()
    K = A.domain
    A_result = A.copy()
    if den != 0:
        A_inv = (A_inv.to_field() / den).to_ddm()
        ddm_iinv(A_result, A, K)
        assert A_result == A_inv
    else:
        raises(DMNonInvertibleMatrixError, lambda: ddm_iinv(A_result, A, K))


@pytest.mark.parametrize('name, A, A_inv, den', INVERSE_EXAMPLES)
def test_Matrix_adjugate(name, A, A_inv, den):
    A = A.to_Matrix()
    A_inv = A_inv.to_Matrix()
    assert A.adjugate() == A_inv
    for method in ["bareiss", "berkowitz", "bird", "laplace", "lu"]:
        assert A.adjugate(method=method) == A_inv


@pytest.mark.parametrize('name, A, A_inv, den', INVERSE_EXAMPLES)
def test_dm_adj_det(name, A, A_inv, den):
    assert A.adj_det() == (A_inv, den)


def test_inverse_inexact():

    M = Matrix([[x-0.3, -0.06, -0.22],
                [-0.46, x-0.48, -0.41],
                [-0.14, -0.39, x-0.64]])

    Mn = Matrix([[1.0*x**2 - 1.12*x + 0.1473, 0.06*x + 0.0474, 0.22*x - 0.081],
                 [0.46*x - 0.237, 1.0*x**2 - 0.94*x + 0.1612, 0.41*x - 0.0218],
                 [0.14*x + 0.1122, 0.39*x - 0.1086, 1.0*x**2 - 0.78*x + 0.1164]])

    d = 1.0*x**3 - 1.42*x**2 + 0.4249*x - 0.0546540000000002

    Mi = Mn / d

    M_dm = M.to_DM()
    M_dmd = M_dm.to_dense()
    M_dm_num, M_dm_den = M_dm.inv_den()
    M_dmd_num, M_dmd_den = M_dmd.inv_den()

    # XXX: We don't check M_dm().to_field().inv() which currently uses division
    # and produces a more complicate result from gcd cancellation failing.
    # DomainMatrix.inv() over RR(x) should be changed to clear denominators and
    # use DomainMatrix.inv_den().

    Minvs = [
        M.inv(),
        (M_dm_num.to_field() / M_dm_den).to_Matrix(),
        (M_dmd_num.to_field() / M_dmd_den).to_Matrix(),
        M_dm_num.to_Matrix() / M_dm_den.as_expr(),
        M_dmd_num.to_Matrix() / M_dmd_den.as_expr(),
    ]

    for Minv in Minvs:
        for Mi1, Mi2 in zip(Minv.flat(), Mi.flat()):
            assert all_close(Mi2, Mi1)