Spaces:
Running
Running
"""Test ideals.py code.""" | |
from sympy.polys import QQ, ilex | |
from sympy.abc import x, y, z | |
from sympy.testing.pytest import raises | |
def test_ideal_operations(): | |
R = QQ.old_poly_ring(x, y) | |
I = R.ideal(x) | |
J = R.ideal(y) | |
S = R.ideal(x*y) | |
T = R.ideal(x, y) | |
assert not (I == J) | |
assert I == I | |
assert I.union(J) == T | |
assert I + J == T | |
assert I + T == T | |
assert not I.subset(T) | |
assert T.subset(I) | |
assert I.product(J) == S | |
assert I*J == S | |
assert x*J == S | |
assert I*y == S | |
assert R.convert(x)*J == S | |
assert I*R.convert(y) == S | |
assert not I.is_zero() | |
assert not J.is_whole_ring() | |
assert R.ideal(x**2 + 1, x).is_whole_ring() | |
assert R.ideal() == R.ideal(0) | |
assert R.ideal().is_zero() | |
assert T.contains(x*y) | |
assert T.subset([x, y]) | |
assert T.in_terms_of_generators(x) == [R(1), R(0)] | |
assert T**0 == R.ideal(1) | |
assert T**1 == T | |
assert T**2 == R.ideal(x**2, y**2, x*y) | |
assert I**5 == R.ideal(x**5) | |
def test_exceptions(): | |
I = QQ.old_poly_ring(x).ideal(x) | |
J = QQ.old_poly_ring(y).ideal(1) | |
raises(ValueError, lambda: I.union(x)) | |
raises(ValueError, lambda: I + J) | |
raises(ValueError, lambda: I * J) | |
raises(ValueError, lambda: I.union(J)) | |
assert (I == J) is False | |
assert I != J | |
def test_nontriv_global(): | |
R = QQ.old_poly_ring(x, y, z) | |
def contains(I, f): | |
return R.ideal(*I).contains(f) | |
assert contains([x, y], x) | |
assert contains([x, y], x + y) | |
assert not contains([x, y], 1) | |
assert not contains([x, y], z) | |
assert contains([x**2 + y, x**2 + x], x - y) | |
assert not contains([x + y + z, x*y + x*z + y*z, x*y*z], x**2) | |
assert contains([x + y + z, x*y + x*z + y*z, x*y*z], x**3) | |
assert contains([x + y + z, x*y + x*z + y*z, x*y*z], x**4) | |
assert not contains([x + y + z, x*y + x*z + y*z, x*y*z], x*y**2) | |
assert contains([x + y + z, x*y + x*z + y*z, x*y*z], x**4 + y**3 + 2*z*y*x) | |
assert contains([x + y + z, x*y + x*z + y*z, x*y*z], x*y*z) | |
assert contains([x, 1 + x + y, 5 - 7*y], 1) | |
assert contains( | |
[x**3 + y**3, y**3 + z**3, z**3 + x**3, x**2*y + x**2*z + y**2*z], | |
x**3) | |
assert not contains( | |
[x**3 + y**3, y**3 + z**3, z**3 + x**3, x**2*y + x**2*z + y**2*z], | |
x**2 + y**2) | |
# compare local order | |
assert not contains([x*(1 + x + y), y*(1 + z)], x) | |
assert not contains([x*(1 + x + y), y*(1 + z)], x + y) | |
def test_nontriv_local(): | |
R = QQ.old_poly_ring(x, y, z, order=ilex) | |
def contains(I, f): | |
return R.ideal(*I).contains(f) | |
assert contains([x, y], x) | |
assert contains([x, y], x + y) | |
assert not contains([x, y], 1) | |
assert not contains([x, y], z) | |
assert contains([x**2 + y, x**2 + x], x - y) | |
assert not contains([x + y + z, x*y + x*z + y*z, x*y*z], x**2) | |
assert contains([x*(1 + x + y), y*(1 + z)], x) | |
assert contains([x*(1 + x + y), y*(1 + z)], x + y) | |
def test_intersection(): | |
R = QQ.old_poly_ring(x, y, z) | |
# SCA, example 1.8.11 | |
assert R.ideal(x, y).intersect(R.ideal(y**2, z)) == R.ideal(y**2, y*z, x*z) | |
assert R.ideal(x, y).intersect(R.ideal()).is_zero() | |
R = QQ.old_poly_ring(x, y, z, order="ilex") | |
assert R.ideal(x, y).intersect(R.ideal(y**2 + y**2*z, z + z*x**3*y)) == \ | |
R.ideal(y**2, y*z, x*z) | |
def test_quotient(): | |
# SCA, example 1.8.13 | |
R = QQ.old_poly_ring(x, y, z) | |
assert R.ideal(x, y).quotient(R.ideal(y**2, z)) == R.ideal(x, y) | |
def test_reduction(): | |
from sympy.polys.distributedmodules import sdm_nf_buchberger_reduced | |
R = QQ.old_poly_ring(x, y) | |
I = R.ideal(x**5, y) | |
e = R.convert(x**3 + y**2) | |
assert I.reduce_element(e) == e | |
assert I.reduce_element(e, NF=sdm_nf_buchberger_reduced) == R.convert(x**3) | |