Spaces:
Running
Running
File size: 3,788 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
"""Test ideals.py code."""
from sympy.polys import QQ, ilex
from sympy.abc import x, y, z
from sympy.testing.pytest import raises
def test_ideal_operations():
R = QQ.old_poly_ring(x, y)
I = R.ideal(x)
J = R.ideal(y)
S = R.ideal(x*y)
T = R.ideal(x, y)
assert not (I == J)
assert I == I
assert I.union(J) == T
assert I + J == T
assert I + T == T
assert not I.subset(T)
assert T.subset(I)
assert I.product(J) == S
assert I*J == S
assert x*J == S
assert I*y == S
assert R.convert(x)*J == S
assert I*R.convert(y) == S
assert not I.is_zero()
assert not J.is_whole_ring()
assert R.ideal(x**2 + 1, x).is_whole_ring()
assert R.ideal() == R.ideal(0)
assert R.ideal().is_zero()
assert T.contains(x*y)
assert T.subset([x, y])
assert T.in_terms_of_generators(x) == [R(1), R(0)]
assert T**0 == R.ideal(1)
assert T**1 == T
assert T**2 == R.ideal(x**2, y**2, x*y)
assert I**5 == R.ideal(x**5)
def test_exceptions():
I = QQ.old_poly_ring(x).ideal(x)
J = QQ.old_poly_ring(y).ideal(1)
raises(ValueError, lambda: I.union(x))
raises(ValueError, lambda: I + J)
raises(ValueError, lambda: I * J)
raises(ValueError, lambda: I.union(J))
assert (I == J) is False
assert I != J
def test_nontriv_global():
R = QQ.old_poly_ring(x, y, z)
def contains(I, f):
return R.ideal(*I).contains(f)
assert contains([x, y], x)
assert contains([x, y], x + y)
assert not contains([x, y], 1)
assert not contains([x, y], z)
assert contains([x**2 + y, x**2 + x], x - y)
assert not contains([x + y + z, x*y + x*z + y*z, x*y*z], x**2)
assert contains([x + y + z, x*y + x*z + y*z, x*y*z], x**3)
assert contains([x + y + z, x*y + x*z + y*z, x*y*z], x**4)
assert not contains([x + y + z, x*y + x*z + y*z, x*y*z], x*y**2)
assert contains([x + y + z, x*y + x*z + y*z, x*y*z], x**4 + y**3 + 2*z*y*x)
assert contains([x + y + z, x*y + x*z + y*z, x*y*z], x*y*z)
assert contains([x, 1 + x + y, 5 - 7*y], 1)
assert contains(
[x**3 + y**3, y**3 + z**3, z**3 + x**3, x**2*y + x**2*z + y**2*z],
x**3)
assert not contains(
[x**3 + y**3, y**3 + z**3, z**3 + x**3, x**2*y + x**2*z + y**2*z],
x**2 + y**2)
# compare local order
assert not contains([x*(1 + x + y), y*(1 + z)], x)
assert not contains([x*(1 + x + y), y*(1 + z)], x + y)
def test_nontriv_local():
R = QQ.old_poly_ring(x, y, z, order=ilex)
def contains(I, f):
return R.ideal(*I).contains(f)
assert contains([x, y], x)
assert contains([x, y], x + y)
assert not contains([x, y], 1)
assert not contains([x, y], z)
assert contains([x**2 + y, x**2 + x], x - y)
assert not contains([x + y + z, x*y + x*z + y*z, x*y*z], x**2)
assert contains([x*(1 + x + y), y*(1 + z)], x)
assert contains([x*(1 + x + y), y*(1 + z)], x + y)
def test_intersection():
R = QQ.old_poly_ring(x, y, z)
# SCA, example 1.8.11
assert R.ideal(x, y).intersect(R.ideal(y**2, z)) == R.ideal(y**2, y*z, x*z)
assert R.ideal(x, y).intersect(R.ideal()).is_zero()
R = QQ.old_poly_ring(x, y, z, order="ilex")
assert R.ideal(x, y).intersect(R.ideal(y**2 + y**2*z, z + z*x**3*y)) == \
R.ideal(y**2, y*z, x*z)
def test_quotient():
# SCA, example 1.8.13
R = QQ.old_poly_ring(x, y, z)
assert R.ideal(x, y).quotient(R.ideal(y**2, z)) == R.ideal(x, y)
def test_reduction():
from sympy.polys.distributedmodules import sdm_nf_buchberger_reduced
R = QQ.old_poly_ring(x, y)
I = R.ideal(x**5, y)
e = R.convert(x**3 + y**2)
assert I.reduce_element(e) == e
assert I.reduce_element(e, NF=sdm_nf_buchberger_reduced) == R.convert(x**3)
|