Kano001's picture
Upload 3077 files
6a86ad5 verified
raw
history blame
10.4 kB
from sympy import sin, cos, tan, pi, symbols, Matrix, S, Function
from sympy.physics.mechanics import (Particle, Point, ReferenceFrame,
RigidBody)
from sympy.physics.mechanics import (angular_momentum, dynamicsymbols,
kinetic_energy, linear_momentum,
outer, potential_energy, msubs,
find_dynamicsymbols, Lagrangian)
from sympy.physics.mechanics.functions import (
center_of_mass, _validate_coordinates, _parse_linear_solver)
from sympy.testing.pytest import raises, warns_deprecated_sympy
q1, q2, q3, q4, q5 = symbols('q1 q2 q3 q4 q5')
N = ReferenceFrame('N')
A = N.orientnew('A', 'Axis', [q1, N.z])
B = A.orientnew('B', 'Axis', [q2, A.x])
C = B.orientnew('C', 'Axis', [q3, B.y])
def test_linear_momentum():
N = ReferenceFrame('N')
Ac = Point('Ac')
Ac.set_vel(N, 25 * N.y)
I = outer(N.x, N.x)
A = RigidBody('A', Ac, N, 20, (I, Ac))
P = Point('P')
Pa = Particle('Pa', P, 1)
Pa.point.set_vel(N, 10 * N.x)
raises(TypeError, lambda: linear_momentum(A, A, Pa))
raises(TypeError, lambda: linear_momentum(N, N, Pa))
assert linear_momentum(N, A, Pa) == 10 * N.x + 500 * N.y
def test_angular_momentum_and_linear_momentum():
"""A rod with length 2l, centroidal inertia I, and mass M along with a
particle of mass m fixed to the end of the rod rotate with an angular rate
of omega about point O which is fixed to the non-particle end of the rod.
The rod's reference frame is A and the inertial frame is N."""
m, M, l, I = symbols('m, M, l, I')
omega = dynamicsymbols('omega')
N = ReferenceFrame('N')
a = ReferenceFrame('a')
O = Point('O')
Ac = O.locatenew('Ac', l * N.x)
P = Ac.locatenew('P', l * N.x)
O.set_vel(N, 0 * N.x)
a.set_ang_vel(N, omega * N.z)
Ac.v2pt_theory(O, N, a)
P.v2pt_theory(O, N, a)
Pa = Particle('Pa', P, m)
A = RigidBody('A', Ac, a, M, (I * outer(N.z, N.z), Ac))
expected = 2 * m * omega * l * N.y + M * l * omega * N.y
assert linear_momentum(N, A, Pa) == expected
raises(TypeError, lambda: angular_momentum(N, N, A, Pa))
raises(TypeError, lambda: angular_momentum(O, O, A, Pa))
raises(TypeError, lambda: angular_momentum(O, N, O, Pa))
expected = (I + M * l**2 + 4 * m * l**2) * omega * N.z
assert angular_momentum(O, N, A, Pa) == expected
def test_kinetic_energy():
m, M, l1 = symbols('m M l1')
omega = dynamicsymbols('omega')
N = ReferenceFrame('N')
O = Point('O')
O.set_vel(N, 0 * N.x)
Ac = O.locatenew('Ac', l1 * N.x)
P = Ac.locatenew('P', l1 * N.x)
a = ReferenceFrame('a')
a.set_ang_vel(N, omega * N.z)
Ac.v2pt_theory(O, N, a)
P.v2pt_theory(O, N, a)
Pa = Particle('Pa', P, m)
I = outer(N.z, N.z)
A = RigidBody('A', Ac, a, M, (I, Ac))
raises(TypeError, lambda: kinetic_energy(Pa, Pa, A))
raises(TypeError, lambda: kinetic_energy(N, N, A))
assert 0 == (kinetic_energy(N, Pa, A) - (M*l1**2*omega**2/2
+ 2*l1**2*m*omega**2 + omega**2/2)).expand()
def test_potential_energy():
m, M, l1, g, h, H = symbols('m M l1 g h H')
omega = dynamicsymbols('omega')
N = ReferenceFrame('N')
O = Point('O')
O.set_vel(N, 0 * N.x)
Ac = O.locatenew('Ac', l1 * N.x)
P = Ac.locatenew('P', l1 * N.x)
a = ReferenceFrame('a')
a.set_ang_vel(N, omega * N.z)
Ac.v2pt_theory(O, N, a)
P.v2pt_theory(O, N, a)
Pa = Particle('Pa', P, m)
I = outer(N.z, N.z)
A = RigidBody('A', Ac, a, M, (I, Ac))
Pa.potential_energy = m * g * h
A.potential_energy = M * g * H
assert potential_energy(A, Pa) == m * g * h + M * g * H
def test_Lagrangian():
M, m, g, h = symbols('M m g h')
N = ReferenceFrame('N')
O = Point('O')
O.set_vel(N, 0 * N.x)
P = O.locatenew('P', 1 * N.x)
P.set_vel(N, 10 * N.x)
Pa = Particle('Pa', P, 1)
Ac = O.locatenew('Ac', 2 * N.y)
Ac.set_vel(N, 5 * N.y)
a = ReferenceFrame('a')
a.set_ang_vel(N, 10 * N.z)
I = outer(N.z, N.z)
A = RigidBody('A', Ac, a, 20, (I, Ac))
Pa.potential_energy = m * g * h
A.potential_energy = M * g * h
raises(TypeError, lambda: Lagrangian(A, A, Pa))
raises(TypeError, lambda: Lagrangian(N, N, Pa))
def test_msubs():
a, b = symbols('a, b')
x, y, z = dynamicsymbols('x, y, z')
# Test simple substitution
expr = Matrix([[a*x + b, x*y.diff() + y],
[x.diff().diff(), z + sin(z.diff())]])
sol = Matrix([[a + b, y],
[x.diff().diff(), 1]])
sd = {x: 1, z: 1, z.diff(): 0, y.diff(): 0}
assert msubs(expr, sd) == sol
# Test smart substitution
expr = cos(x + y)*tan(x + y) + b*x.diff()
sd = {x: 0, y: pi/2, x.diff(): 1}
assert msubs(expr, sd, smart=True) == b + 1
N = ReferenceFrame('N')
v = x*N.x + y*N.y
d = x*(N.x|N.x) + y*(N.y|N.y)
v_sol = 1*N.y
d_sol = 1*(N.y|N.y)
sd = {x: 0, y: 1}
assert msubs(v, sd) == v_sol
assert msubs(d, sd) == d_sol
def test_find_dynamicsymbols():
a, b = symbols('a, b')
x, y, z = dynamicsymbols('x, y, z')
expr = Matrix([[a*x + b, x*y.diff() + y],
[x.diff().diff(), z + sin(z.diff())]])
# Test finding all dynamicsymbols
sol = {x, y.diff(), y, x.diff().diff(), z, z.diff()}
assert find_dynamicsymbols(expr) == sol
# Test finding all but those in sym_list
exclude_list = [x, y, z]
sol = {y.diff(), x.diff().diff(), z.diff()}
assert find_dynamicsymbols(expr, exclude=exclude_list) == sol
# Test finding all dynamicsymbols in a vector with a given reference frame
d, e, f = dynamicsymbols('d, e, f')
A = ReferenceFrame('A')
v = d * A.x + e * A.y + f * A.z
sol = {d, e, f}
assert find_dynamicsymbols(v, reference_frame=A) == sol
# Test if a ValueError is raised on supplying only a vector as input
raises(ValueError, lambda: find_dynamicsymbols(v))
# This function tests the center_of_mass() function
# that was added in PR #14758 to compute the center of
# mass of a system of bodies.
def test_center_of_mass():
a = ReferenceFrame('a')
m = symbols('m', real=True)
p1 = Particle('p1', Point('p1_pt'), S.One)
p2 = Particle('p2', Point('p2_pt'), S(2))
p3 = Particle('p3', Point('p3_pt'), S(3))
p4 = Particle('p4', Point('p4_pt'), m)
b_f = ReferenceFrame('b_f')
b_cm = Point('b_cm')
mb = symbols('mb')
b = RigidBody('b', b_cm, b_f, mb, (outer(b_f.x, b_f.x), b_cm))
p2.point.set_pos(p1.point, a.x)
p3.point.set_pos(p1.point, a.x + a.y)
p4.point.set_pos(p1.point, a.y)
b.masscenter.set_pos(p1.point, a.y + a.z)
point_o=Point('o')
point_o.set_pos(p1.point, center_of_mass(p1.point, p1, p2, p3, p4, b))
expr = 5/(m + mb + 6)*a.x + (m + mb + 3)/(m + mb + 6)*a.y + mb/(m + mb + 6)*a.z
assert point_o.pos_from(p1.point)-expr == 0
def test_validate_coordinates():
q1, q2, q3, u1, u2, u3, ua1, ua2, ua3 = dynamicsymbols('q1:4 u1:4 ua1:4')
s1, s2, s3 = symbols('s1:4')
# Test normal
_validate_coordinates([q1, q2, q3], [u1, u2, u3],
u_auxiliary=[ua1, ua2, ua3])
# Test not equal number of coordinates and speeds
_validate_coordinates([q1, q2])
_validate_coordinates([q1, q2], [u1])
_validate_coordinates(speeds=[u1, u2])
# Test duplicate
_validate_coordinates([q1, q2, q2], [u1, u2, u3], check_duplicates=False)
raises(ValueError, lambda: _validate_coordinates(
[q1, q2, q2], [u1, u2, u3]))
_validate_coordinates([q1, q2, q3], [u1, u2, u2], check_duplicates=False)
raises(ValueError, lambda: _validate_coordinates(
[q1, q2, q3], [u1, u2, u2], check_duplicates=True))
raises(ValueError, lambda: _validate_coordinates(
[q1, q2, q3], [q1, u2, u3], check_duplicates=True))
_validate_coordinates([q1, q2, q3], [u1, u2, u3], check_duplicates=False,
u_auxiliary=[u1, ua2, ua2])
raises(ValueError, lambda: _validate_coordinates(
[q1, q2, q3], [u1, u2, u3], u_auxiliary=[u1, ua2, ua3]))
raises(ValueError, lambda: _validate_coordinates(
[q1, q2, q3], [u1, u2, u3], u_auxiliary=[q1, ua2, ua3]))
raises(ValueError, lambda: _validate_coordinates(
[q1, q2, q3], [u1, u2, u3], u_auxiliary=[ua1, ua2, ua2]))
# Test is_dynamicsymbols
_validate_coordinates([q1 + q2, q3], is_dynamicsymbols=False)
raises(ValueError, lambda: _validate_coordinates([q1 + q2, q3]))
_validate_coordinates([s1, q1, q2], [0, u1, u2], is_dynamicsymbols=False)
raises(ValueError, lambda: _validate_coordinates(
[s1, q1, q2], [0, u1, u2], is_dynamicsymbols=True))
_validate_coordinates([s1 + s2 + s3, q1], [0, u1], is_dynamicsymbols=False)
raises(ValueError, lambda: _validate_coordinates(
[s1 + s2 + s3, q1], [0, u1], is_dynamicsymbols=True))
_validate_coordinates(u_auxiliary=[s1, ua1], is_dynamicsymbols=False)
raises(ValueError, lambda: _validate_coordinates(u_auxiliary=[s1, ua1]))
# Test normal function
t = dynamicsymbols._t
a = symbols('a')
f1, f2 = symbols('f1:3', cls=Function)
_validate_coordinates([f1(a), f2(a)], is_dynamicsymbols=False)
raises(ValueError, lambda: _validate_coordinates([f1(a), f2(a)]))
raises(ValueError, lambda: _validate_coordinates(speeds=[f1(a), f2(a)]))
dynamicsymbols._t = a
_validate_coordinates([f1(a), f2(a)])
raises(ValueError, lambda: _validate_coordinates([f1(t), f2(t)]))
dynamicsymbols._t = t
def test_parse_linear_solver():
A, b = Matrix(3, 3, symbols('a:9')), Matrix(3, 2, symbols('b:6'))
assert _parse_linear_solver(Matrix.LUsolve) == Matrix.LUsolve # Test callable
assert _parse_linear_solver('LU')(A, b) == Matrix.LUsolve(A, b)
def test_deprecated_moved_functions():
from sympy.physics.mechanics.functions import (
inertia, inertia_of_point_mass, gravity)
N = ReferenceFrame('N')
with warns_deprecated_sympy():
assert inertia(N, 0, 1, 0, 1) == (N.x | N.y) + (N.y | N.x) + (N.y | N.y)
with warns_deprecated_sympy():
assert inertia_of_point_mass(1, N.x + N.y, N) == (
(N.x | N.x) + (N.y | N.y) + 2 * (N.z | N.z) -
(N.x | N.y) - (N.y | N.x))
p = Particle('P')
with warns_deprecated_sympy():
assert gravity(-2 * N.z, p) == [(p.masscenter, -2 * p.mass * N.z)]